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Abstract - In this paper we evaluate and discuss the
performance of a passive TCP packet loss estimation algorithm
described by Benko and Veres. Our analysis is motivated by
recent work modeling web traffic patterns and the network
conditions experienced by TCP sessions carrying web traffic.
We experimentally determine the dynamic characteristics of the
Benko-Veres estimation algorithm, focusing on how quickly the
algorithm converges to a reasonable estimate of packet loss rate
for a given TCP session and path. The Benko-Veres algorithm is
stimulated in a small IP network testbed, using repeated TCP
sessions over a path with variable and controlled packet loss
rates. Our results show that the Benko-Veres algorithm requires
many packets and loss events before it converges to reasonably
accurate loss rate estimates. Finally we identify and discuss the
limited real-world scenarios where this method of passive,
external estimation of packet loss rates can be applied.

Keywords- Traffic Characterization, TCP, Packet Loss

I.  INTRODUCTION

This paper describes our evaluation of a previously
published technique for passively estimating packet loss
on individual TCP sessions. Our interest in passive loss
estimation derives from a broader project aimed at
modeling web traffic dynamics with realistic network
conditions [4]. We want to build on previous work
estimating the cachability of web objects [2] and the
dynamic rates of change of web objects [3] by
experimentally determining the packet loss rates
typically seen by TCP sessions originating and
terminating on web servers. Our ultimate goal is to
produce a network simulator that embodies
experimentally verified, real-world network
characteristics.

Benko and Veres described a method for estimating
packet loss by passively monitoring TCP sessions at an
independent measurement point on the network [1].
Their algorithm estimates packet loss rates by observing
inconsistencies in the sequence number progression seen
in TCP packets belonging to a particular flow.
However, they do not evaluate the convergence speed of
their algorithm.

For our purposes the convergence speed is the
number of packets that must pass the measurement point
before the loss rate estimate is within a reasonable
percentage of the actual loss rate. Real TCP sessions

have finite durations and packet counts, and the loss
characteristics of an IP path can change over time. The
convergence speed of a loss estimation algorithm places
a practical bound on how much we can accurately know
about loss rates through passive monitoring of real-
world TCP sessions at intermediate points along an IP
packet path.

For these reasons we decided to implement a small
testbed (based on Figure 1) capable of introducing
controlled, constant packet loss rates and experimentally
evaluate the Benko-Veres algorithm's dynamic
characteristics. Given our ultimate real-world scenario
involves tapping close to operational web servers we can
make the simplifying assumption that measurement
occurs at a place where IP routing is symmetric and
packets in both directions will be seen and captured.

The rest of this paper explains the Benko-Veres loss
rate estimation algorithm, outlines our test methodology,
and discusses the implications of our results. We also
make some suggestions for improving their algorithm.

Several passive TCP session analysis tools are
available to the research community. Tcptrace [5], Tstat
[6] and Nprobe [7] are examples of those. Neither
tcptrace or tstat has a built in packet loss estimator and
although Nprobe claims to be able to compute packet
loss its code had not been released when we performed
our experiments. We used Tstat as a starting point to
code the packet loss estimator algorithm.

II.  TESTING THE BENKO-VERES ALGORITHM

A. Algorithm description

First we summarise the Benko-Veres algorithm [1]
with reference to the generalised network in Figure 1.

The client opens a TCP connection to the server,
sends some data and then closes the connection. The
monitoring point M sees all the packets exchanged by
the client and the server and, by examining those
packets' sequence numbers, estimates the packet loss
rate in network A and network B.

The basic idea of the algorithm is to analyse the
sequence number progression from the perspective of
the measurement point M, and infer where and which
packets are lost. An out of order sequence number that
has previously been seen implies that the corresponding

1 This work was performed while working for Swinburne University of Technology. Claudio can be contacted at claudio.favi@epfl.ch
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packet was lost in the network after the measurement
point. On the contrary, an out of order sequence number
that had never been seen before implies that the
corresponding packet (first transmission) was lost before
it got to M hence lost in the network before M. The
algorithm doesn't try to use acknowledgment packets or
any sort of timing estimation to infer losses.

To further understand the algorithm it is necessary to
realize that we're not interested in the exact number of
packets lost, but only in the loss ratio. We select a subset
of packets for which it can be determined, with
relatively high probability, whether and where the
packets were lost. Those packets are called "significant
packets".

When we see a given TCP segment for the first time,
that packet is marked as a "significant packet". Based on
the TCP segment's sequence number, and using the
algorithm described above, we then decide whether this
packet indicates a loss event has occurred (either before
or after the measurement point). The running loss
estimate is the number of loss events divided by the total
number of "significant packets" at any given point in
time.

To improve the accuracy of the loss estimation,
Benko and Veres ignore the first and last segments of a
TCP session. They also ignore any sequence of three or
more "significant packets" that have been flagged as
representing consecutive loss events.

It is important to note that the monitoring point, M, is
passive – it does not represent a congestion point, and
does not introduce packet loss artifacts of its own. It
might typically be implemented using a broadcast hub
(on low speed links), 'port-mirroring' (off high speed
routers) or some form of optical tap.

B. The Testbed

Our actual testbed consisted of three x86-based hosts
running FreeBSD 4.8 [8] - a client (C), a server (S) and
a third machine (B) acting as an Ethernet bridge (Figure
2). The bridge host utilized FreeBSD's kernel-resident
packet filtering (ipfw [9]) and traffic shaping
(dummynet [10]) functionality to introduce configurable
and controlled packet loss on the IP path between the
client and server. (Dummynet has previously been
shown to generate uniformly distributed packet loss at
rates within a few percent of configured values [12].)
We used a freely available tool (ypfw [11]) to ease the

configuration of ipfw, and used Python [13] scripts to
create the customized client and server programs.

Each test run involved the client connecting to the
server (via a TCP socket) and generating 10000 send
calls to the socket with random data. The server would
simply read and discard the transmitted data. To ensure
that for each data unit we want to send a TCP packet is
generated, and that on a loss event an exact copy of the
original packet is retransmitted, we created random data
with a length equal to the difference between the link
layer MTU and a TCP packet header length. (In our case
this was 1500-52, or 1448 bytes.) We run several
simulations for different packet loss rates.

We run tcpdump on the client thus limiting the
results to the after-monitoring-point precision of the
estimator. Although our preliminary tests showed not
much difference between the before and after
monitoring point cases.

It is important to note that node B did not introduce
an uncontrolled congestion point – all packet losses
introduced by B were configured through dummynet.

C. Measuring the algorithm's dynamic behaviour

We began by running one trial at each of a number of
actual packet loss rates, and plotted the algorithm's
running estimate (as a function of packets transmitted)
in Figure 3. Not surprisingly the algorithm converges
faster at higher loss rates because there are more loss
events from which to refine its running estimate.

Each trial run has a certain amount of randomness
inherent in the interaction between TCP and the
distribution of packet drops introduced by dummynet.
Figure 4 shows how the broad shape of the algorithm's
convergence is nevertheless relatively consistent (in this
case over 30 trials with the bridge configured for a 3%
packet loss rate). 

Figures 3 and 4 clearly suggest that the algorithm
estimates the real packet loss rate quite well in the long

Figure 1: Measurement scenario

Network A
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data flow
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Network B

Server S

Figure 3: Loss Estimation
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run. But we are interested in knowing the minimum
number of packets needed to be sure that the estimate is
within a certain percentage of the actual loss rate.

The next set of figures focus on the estimation error,
expressed as the difference between the estimated and
actual loss rate as a fraction of the actual loss rate.

Figure 5 shows the normalized maximum estimation
error at each loss rate, plotted as a function of packets
transmitted. We ran 30 trials at each simulated packet
loss rate, and then calculated the maximum envelope2 of
the range of estimates produced over the 30 trials (i.e..
the upper and lower bounds of the curves in Figure 4).
We then computed the difference between the real
packet loss rate and the maximum envelope's upper and
lower bounds, which is then normalized (expressed as a
fraction of the loss real rate).

Using the maximum envelope gives us an insight into
the likely worst case accuracy of the loss estimator. For
example if we wish to obtain an estimate that almost
certainly lies within 30% of the real value for packet
loss rate above 0.7% Figure 5 shows we need to see
around 4000 packets on the TCP connection being
monitored.

The maximum envelope provides a worst-case
estimate on the number of packets we would need to see

2 To calculate the envelope we windowed the data in blocks
of 50 packets interval and computed the max and min of
all the samples in the window.

for a given estimation accuracy. For comparison we also
calculated a 'one standard deviation estimation error'
plot – the number of packets required for the estimation
error to be below a certain value with 68% likelihood
(assuming the estimates of different runs, e.g. in Figure
4, are normally distributed in the Y-axis).

We computed the average estimation error and
standard deviation (as opposed to the maximum and
minimum for the envelope), then calculated the
maximum of the difference between the real rate and the
computed mean plus or minus the standard deviation.
The results are shown in Figure 6. For example, when
the real error rate is 0.7% (0.007) we would need to see
around 1500 TCP packets to get an error estimate that is
68% likely to be better than 30%.

Better accuracy may be obtained by calculating the
mean of the repeated loss rate estimates if the same TCP
session can be repeated over time periods where the
network path is essentially unchanged. Figure 7 shows
the plot of the mean of the relative error (the computed
mean used in Figure 6). In this case an estimation error
of less than 30% can be obtained by repeating TCP
connections that each last only a couple of hundred
packets, regardless of the real loss rate.

Figure 7: Estimation Error for the mean of 30 runs
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Figure 5: Normalized Maximum Estimation Error
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Error

Figure 4: Estimation @ 3% packet loss
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III.DISCUSSION

Clearly the Benko-Veres algorithm will generally
converge, but it takes quite some time (many packets) to
converge on a significantly accurate loss estimate.
Naturally it converges quicker the higher the actual loss
rate (given that the algorithm refines its running estimate
each time a loss event occurs). Our first question is to
identify the real-world traffic scenarios in which the
Benko-Veres algorithm would perform acceptably. A
secondary question is how we might improve on the
algorithm.

The following disscussion raises points for future
work stimulated by this paper.

A. Usage Scenarios

Our overall motivation is monitoring traffic in and
out of popular web servers to characterize the packet
loss statistics along the paths out to each server's many
clients. In conjunction with IP header information from
the passive network tap we hoped to build maps relating
estimated loss rates and client locations (derived from
their IP addresses and TTLs). However, it is clear that
we will not be able to estimate losses to clients who are
simply downloading typical sets of web pages (non-
streaming text and graphical content).

The first reality is that web pages designed for
consumer access are going to trigger downloads towards
the client in the 20-60KBytes range [2] [16] The
associated TCP session would generate in the order of
tens to hundreds of IP packets – not quite the 1000 or
more packets we see as the low end for reasonably
bounded estimation error.

A second reality is that we cannot take unbounded
periods of time (in the real time domain) to make our
loss estimates because the network conditions causing
loss are themselves time varying. For example, we
might think to average over many TCP sessions to the
same client over a period of visits to the web server
(appealing to the benefits shown in Figure 7). But if the
client's actual download speed (or web site traversal
speed) is low the real network conditions (and hence
loss rates) are likely to have fluctuated over the
sampling period.

We would have more success mapping the loss rates
to clients who are accessing a streaming-content server,
or downloading large multi-megabyte files, at a
reasonably high packet rate. For example, if we assumed
an MSS of 1480 bytes along a TCP session's path, then
downloading a typical 620MByte CDROM image would
generate in the order of 440K packets – significantly in
excess of our requirements. Coming from the other
direction, if we set a target of 2000 packets then this
would be achieved by clients downloading content in the
3MByte range – probably not unusual, for example, of
the server is an archive of mp3 files.

Multi-site enterprise VPNs are another scenario
where this loss rate estimator might find applicability.
For example, imagine a field office doing nightly file
system backups (using a TCP-based file transfer
application, e.g. rsync [15]) over a VPN link back to
head office. The VPN link has been sold with a

particular service level agreement (SLA) mandating
worst-case packet loss rates. Over a period of time a
passive monitoring point would see enough TCP
sessions (and enough packets per session, if the nightly
updates involved more than a few megabytes of data) to
reach a relatively accurate estimate of actual loss rates
over the VPN link. This has potential applications for
the VPN customer to ensure their ISP is meeting the
SLA.

B. Improving the Algorithm

As published, the Benko-Veres algorithm simply
averages its loss rate estimate over all the significant
segments since the beginning of the TCP session. This
means that the estimated loss rate over a very long lived
session might not reflect a slow change in the loss rate
over the time of the session. (For example, if the loss
rate was 1% for the first ten thousands packets, and then
5% for the next ten thousand packets, the algorithm
would estimate a loss rate around 3%.)

Now that we know how quickly the algorithm
converges, we could propose to introduce long term
memory loss into the algorithm. In other words, the
estimator would calculate a running average based
solely on the last X thousand packets, where X depends
on your desired estimation accuracy and the current
estimated loss rate. Based on the figures shown earlier in
this paper, X is likely to be between two and six.

We would also propose that a better loss estimator
would use information in ACKs flowing in the opposite
direction to improve the packet loss event detection.
Matching ACKs to data packets and inferring losses
would be a start although such an improvement requires
lot of complexity added to the algorithm.

Also by adding time awareness to the algorithm one
could improve it greatly. It requires estimating the end-
to-end round trip time between hosts and being able to
tell losses from delayed answers due to computation
load. Previously published work uses a similar technique
to study the effect of “Early Packet Loss” on web pages
download times [14].

C. Changing the testbed

One key difference between our testbed and likely
real-world scenarios involves our use of uniform packet
loss distribution at node B in Figure 2. Future research
on packet loss estimation (whether incremental
improvement to Benko-Veres or entirely new
approaches) should 'drive' the testbed with non-uniform
packet loss distributions (e.g. Randomly spaced short
bursts of packet loss, perhaps more representative of
congestion-based loss in the network.)

IV.CONCLUSION

We have presented a detailed analysis of the Benko-
Veres packet loss rate estimator [1], showing its
limitations and discussing in which cases and to what
extent its result are usable. We find that it typically
needs to see at least one to two thousand packets before
its estimated loss rate is within 30-50% of the actual loss
rates on the TCP session's path. Because of the
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algorithm's convergence rate, it is suitable for passively
monitoring loss rates on TCP sessions carrying objects
upwards of 3-4MBytes long, but is not suitable for
estimating packet loss rates on TCP sessions carrying
short-lived (20-100Kbyte) HTTP responses to typical
web page GET requests. The estimator may also find
use passively monitoring SLA-conformance of multi-
site VPN links where the VPN customer does regular,
repeated TCP-based file transfers (e.g. nightly file
system dumps between remote and head offices). We
conclude by observing that our convergence time
analysis allows us to propose a refinement to the
algorithm such that it “forgets” any packet traffic more
than two to six thousand packets in the past. This would
allow the algorithm to more accurately track loss rate
estimates on extremely long lived sessions.
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