
A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

An Evaluation of Current MPEG-1 Ciphers and their Applicability to Streaming
Video

Jason But, Grenville Armitage
Centre for Advanced Internet Architectures

Swinburne University of Technology
Melbourne, Australia

{jbut,garmitage}@swin.edu.au

Abstract - Copyright protection is one of the many aspects of
implementing a commercially successful video streaming service and
encryption of content is one means through which Copyright can be
protected. MPEG-1 is one of the many video compression techniques
used in streaming video and a number of MPEG-1 ciphers have been
proposed in the past. These ciphers were primarily designed with the
idea of public storage of MPEG-1 content. This paper considers the
suitability of these ciphers in a streaming video context, concluding that
no existing cipher is suitable for use in streaming MPEG-1 video and that
a new cipher is required for this purpose.

Keywords- MPEG Encryption, Streaming Video, Video-on-Demand,
Copyright Protection

I. INTRODUCTION

Protection of digital content delivered by a streaming
video service is one of numerous issues that must be
addressed for such a service to be a commercial success. A
suitable solution must take into account how streaming video
is provided and incorporate into that framework.

A distributed server design involves the use of distributed
streaming servers acting as a cache providing video
streaming services to the local area. These services will
include advanced functionality such as indexed and high-
speed playback modes [1, 2]. Advanced playback modes of
video caches must continue to be supported when streaming
encrypted video. This leads to the development of a set of
requirements that an MPEG-1 cipher must meet before it can
be considered suitable for use in streaming video [1, 3].

In this paper we examine a number of existing MPEG-1
encryption techniques and evaluate their suitability for use in
streaming video. We show that none of the evaluated
ciphers meet all of the criteria for use in streaming video.
While the MPEG-1 video compression algorithm could be
considered out of date, the principles of MPEG-1
compression and its subsequent encryption can typically be
applied to more recent video compression algorithms such as
MPEG-2 and MPEG-4.

II. CIPHER REQUIREMENTS

A typical solution for streaming video is Distributed
Streaming Servers [2]. Video content is cached at a local
streaming server from where it is streamed to a number of
local viewers [2, 5]. Distributed servers increase the number
of customers who can receive concurrent video streams for a
given level of network resource consumption. Copyright
protection and Digital Rights Management of streaming
video must be considered in view of a Distributed Server
implementation [4].

A. Distributed Streaming Servers

Streaming servers ought to be platform-agnostic, offering
greater platform choice to the system designer. The servers
themselves also becomes targets for theft of content stored
on that server [3]. Digital Rights Management must enable
content to be installed on servers in encrypted form. As a
streaming video solution should function with a range of
streaming server products, so should the MPEG-1 cipher be
independent of the streaming server implementation [3].

Fig. 1 shows the general relationship between Digital
Rights Management and Copyright protection in a
distributed server environment. The encrypted content is
made freely available by the content owner and cached in
encrypted form at the local streaming servers. When a

Fig. 1. Content Protection in a Distributed Server Environment

Conten t Server

Content Flow

ISP/ Local
Network

Clien t

Cache/ Distribu ted
Server

Conten t Owner
Network Internet

Content and Copyright
Managem en t

Content Management

�����
�����	��
� ���	�������������	��������� �����	�!�	��"�#$�$
&%�' � %

()!* � ��+,	�!,�+ ����-�.���+,

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

consumer wishes to view the video, they purchase a
decryption key from the content owner and then stream the
encrypted video from the local video server, decrypting it
with their purchased key [6].

There are a number of advantages to decoupling the cipher
and streaming server implementations. First, the server
platform can be chosen based on functionality and cost rather
than on the security features. Second, security is
implemented by encryption experts rather than by streaming
server developers. Third, existing streaming server products
can be utilised as is, and future streaming video products will
be supported [3].

B. Streaming Server Implementation

A cipher must function within existing and future
streaming server environments, so it is important to consider
how streaming servers are typically implemented. Video is
typically streamed over the network at the average bit rate of
the encoded stream, where it is buffered and fed into the
decoder at the encoded variable bitrate (Fig. 2). The
mechanics of network delivery differs between server
implementations, but there is a common factor – the original
bitstream is reconstructed prior to decoding [3, 7].

There are three approaches to perform this function:

� Stream the MPEG-1 System Stream over the network, the
client passes this data directly to the decoder [3, 6].

� Server extracts encoded Video and Audio Streams from a
stored file and delivers them separately. The System
Stream is reconstructed at the client prior to being passed
to the decoder [3, 6].

� As above, but the client passes each stream to
independent MPEG-1 Video and MPEG-1 Audio
decoders [3, 6].

Requirement: It must be possible to extract the
Video and Audio Streams from the encrypted bitstream
and to decrypt and decode these streams independently,
without changes to existing streaming server
implementations.

Many servers partially decode the bitstream upon
installation to confirm that it will be possible to provide
indexed and high-speed playback modes [3, 6].

Requirement: The encrypted bitstream must have
valid MPEG-1 bitstream syntax so that it can be
successfully installed on the server.

Indexed playback is typically implemented by locating
timestamps encoded in the stored video file and commencing
streaming from that point. The decoder is reset and
recommences decoding of the new bitstream [3, 8].

Requirement: Index points into the video stream are
typically the start of any Group of Pictures (GOP) in the
original bitstream. The streaming server must be able to
locate each GOP in the encrypted bitstream, ensuring
support of indexed playback of an encrypted bitstream.

Requirement: The cipher must be able to
resynchronise itself such that decryption can correctly
occur at allowable indexation points (start of GOP)
within the video stream.

Not all streaming servers provide high-speed playback
modes. Typically a new MPEG-1 Video Stream is
constructed from the first I-Frames of each GOP in the
original bitstream (Fig. 3). This new bitstream can be played
in either direction, utilising less resources than simply
playing the original bitstream at a faster rate [3, 9]. The
audio stream is not delivered during high-speed playback [3].

Requirement: The streaming server must be able to
locate each I-Frame within the encrypted bitstream.

Requirement: The cipher must be able to
resynchronise itself such that decryption can correctly
occur during high-speed playback modes, each I-Frame
must be able to be decrypted independently.

C. Other Requirements

Other desirable qualities of the cipher include scalability,
security and support of existing decoder platforms [3].

Requirement: Encrypting the bitstream must not
affect the maximum number of concurrent streams that
the server can support.

Fig. 2. Constant Bitrate MPEG Streaming Fig. 3. Generating a High-Speed Playback Bitstream

GOP

Header Picture
B-Frame

Picture
P-Frame

Picture
I-Frame

Picture
B-Frame

GOP

Header Picture
B-Frame

Picture
I-Frame

GOP

Header Picture
I-Frame

GOP

Header Picture
I-Frame

Other GOPS

�����
�����
	��� ���
�������������
������� �!�����
�"�
� #�$%�%�'&�(&

) *"+ �!��, � � � , ����-�.���, �

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

Requirement: The cipher module should not form an
explicit part of the decoder, allowing the use of existing
and future MPEG-1 decoder implementations.

III. EXISTING MPEG-1 CIPHERS

We consider a range of existing approaches and find none
of them suitable for protection of streaming video. These
include using existing secure network protocols, encrypting
the entire bitstream at the application layer, and a range of
existing MPEG-1 Partial Encryption Ciphers.

The deficiencies of these ciphers are summarised in . None
of these ciphers provide a suitable solution for encryption of
streaming MPEG-1 video.

A. Network and Transport Layer Encryption

Existing network protocols such as IPSec or Transport
Layer Security (TLS) could be used to encrypt the bitstream
independently from the streaming server infrastructure,
minimising system design requirements.

IPSec is an IP layer solution [11, 12] providing secure
links between any two IPsec enabled hosts (often utilized for
Virtual Private Networks over public IP networks). In a
streaming video scenario IPSec would be installed either on
the streaming server or its gateway router. All traffic is
encrypted as it leaves the site and decrypted at the client
computer. While IPSec is compatible with all existing IP
based software [11, 13], it is unsuitable for use with
streaming video. IPSec is processor intensive, leading to

scalability problems and limiting the maximum number of
concurrent streams that can be supported [14].

Another concern is that the content server itself stores the
video content in plaintext, making the server an attractive
target for attempts to steal content. In addition, decrypted
packets are easily captured from the IP Stack at the client.

IPSec was originally designed for secure communications
between trusted parties. However, a streaming video service
requires distribution of content from one trusted party (the
central server) to an untrusted party (the client), potentially
via a second untrusted party (the streaming server operator).

TLS – based on Netscape's original implementation of the
Secure Sockets Layer (SSL) protocol – is a sockets layer
solution [15] providing secure communications between two
applications running on IP enabled hosts. As SSL runs on
top of TCP/IP, an SSL session can be routed by any IP
Router on the network. SSL is typically used to provide
secure web services such as Internet banking.

SSL is unsuitable for streaming video, having similar
scalability and security problems as IPsec. Further, because
SSL provides secure communications over TCP, many
existing UDP- or RTP-based content streaming applications
would require modification to utilise SSL [13, 15].

B. Full Encryption

Another approach is to encrypt the entire bitstream [14].
One approach is to store video as plaintext on the streaming
server, and then encrypt the entire bitstream during delivery.

TABLE 1 SUMMARY OF SUITABILITY OF MPEG-1 ENCRYPTION TECHNIQUES WITH STREAMING VIDEO

Cipher

IPSec N/A � � N/A N/A N/A N/A N/A N/A

SSL N/A � � N/A N/A N/A N/A N/A N/A

Full Encryption N/A � � N/A N/A N/A N/A N/A N/A

SECMPEG � � � � � � � � �

Zig-Zag Permutation Algorithm � � � � � � � � �

Video Encryption Algorithm � � � � � Unknown Unknown � �

� � � � � � � � �

� � � � � Unknown Unknown � �

A Unique Cipher � � � � � � � � �

Multi-Layer Encryption � � � � � Unknown Unknown � �

� � � � � � � � �

AEGIS � � � � � Unknown Unknown � �

Encrypted bit-
stream can be

stored on Serv-
er

Scalable to
support multi-
ple concurrent

streams

No changes re-
quired to Server
implementation

Encrypted bit-
stream can be
served in In-

dexed Playback
modes

Encrypted bit-
stream can be
served in High-
Speed Playback

modes

Cipher can be
resynchronised
at client during
Indexed Play-

back

Cipher can be
resynchronised
at client during

High-Speed
Playback

Cipher can be
efficiently im-
plemented ex-
ternally to the
MPEG-1 de-
coder imple-

mentation

Cipher is secure
against attack

Video Encryption Algorithm –
Number 2

Frequency Domain Scrambling
Algorithm

Selective Macroblock
Encryption

*Unknown – The cipher designers have not specified how key resynchronisation takes place.

�����
�����
	��� ���
�������������
������� �!�����
�"�
� #�$%�%�'&�(&

) *"+ �!��,�-
�"-�, ����.�/���,�-

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

The drawbacks are similar to IPSec and SSL based systems –
processing requirements for real-time encryption of multiple
streams and potential for server attack. Further, it requires
modifications to existing streaming servers to ensure that the
video is streamed in encrypted form [14, 16].

A second approach encrypts all video prior to storage on
streaming servers, minimising processing requirements on
the server and guarding against theft from the server.
However, the encrypted bitstreams do not conform to the
MPEG-1 bitstream specifications and cannot be streamed by
existing streaming servers. Also, existing servers could not
provide different playback modes unless additional
information is stored about specific index points within the
bitstream [8-10].

C. SECMPEG

The SECMPEG cipher (Meyer and Gadegast [17]) applies
one of four algorithms (Encrypt all headers; Encrypt all
headers and DC co-efficients of I-Macroblocks; Encrypt all
I-Frames and I-Macroblocks in P and B Frames; Encrypt
entire bitstream). The selected data is encrypted using either
the DES or RSA ciphers. The headers are augmented with
extra information that allows correct decryption at a later
stage.

SECMPEG is unsuitable for streaming video. The header
changes make all four modes incompatible with existing
MPEG-1 Streaming Server products. It is also not possible to
index into the bitstream due to the non-resynchronisation of
the cipher employed. SECMPEG encrypted video can only
be decrypted from beginning to end at normal playback
speed, precluding the implementation of indexed or high-
speed playback modes [8].

D. Zig-Zag Permutation Algorithm

In an MPEG-1 video stream, each block of 8x8 pixels in a
Macroblock is encoded using a Discrete Cosine Transform
(DCT) and processed in a zig-zag pattern. Tang [19]
proposed using a random permutation list to map the 8x8
block rather than the fixed zig-zag pattern. The algorithm
also splits the DC co-efficient to hide its relatively large
value amongst smaller AC co-efficients. The same
permutation list is applied to all Macroblocks.

Tang suggests additional modifications. One involves the
pseudo-random selection of one of two permutation lists via
a cryptographically secure random bit generator, the other
applies the DES cipher to blocks of 8 DC co-efficients [19].

As the cipher only modifies the Macroblock contents, the
bitstream can be processed by a streaming server and all
playback modes are supported. Resynchronisation of the
cipher in the indexed and high-speed playback modes is not
required because each frame is encrypted with the same list.

However, if the permutation list is pseudo-randomly selected
the random bit generator must be resynchronised.

This cipher is vulnerable to a known plaintext attack. By
comparing the decoded DCT co-efficients, they can be
reordered and the permutation list retrieved, which can then
be applied to the remainder of the sequence to retrieve all
data. This also works if two permutation lists are used –
apply both patterns and select the most likely of the two
Macroblocks – typically the Macroblock with larger DC and
low order AC co-efficients. The cipher is also vulnerable to
a ciphertext only attack as described by Qiao [14, 19].

Tang [18] proposes a decoder with a built-in cipher
module, allowing the random permutation list to be applied
after the co-efficients have been extracted from the
bitstream, but before they are decoded into individual pixel
values. CPU resource requirements are low as re-organising
DCT co-efficients is a simple task. However, incorporating
the cipher into the decoder precludes the use of third-party
MPEG-1 decoders.

E. Video Encryption Algorithm

Qiao and Nahrstedt [20] propose the Video Encryption
Algorithm (VEA). VEA encrypts individual frames – all
data at the Picture Layer within the Video Stream is selected
for encryption. The Picture Layer is encrypted by:

� Sub-dividing data into blocks of an even number of
bytes. Randomly divide each block into two lists of
equal length.

� The two lists are XORed to form a third list.

� The encrypted block is constructed from the third list and
the second list encrypted using a cipher such as DES.

Decryption involves the decryption of the second list
which is then XORed with the third list to retrieve the
original first list. The original plaintext stream is then
reconstructed. The Picture Layer bitstream format uses a new
header block encoding the number and length of Slices
within the Picture, shortening rather than lengthening the
bitstream [20].

VEA is secure - the second list acts as a unique one-time
pad, encrypting the first list. The ciphertext consists of the
one-time pad ciphertext and an encrypted copy of the one-
time pad. VEA is as secure as the cipher used to protect the
second list [20]. However, VEA is not suitable for streaming
video - the Picture Layer format has been modified, and
High-speed playback modes cannot be implemented since
individual I-Frames cannot be extracted from the bitstream.
(Since the bitstream expands following decryption, real-time
decoders also need to account for extra processor and
memory requirements.)

�����
�����
	��� ���
�������������
������� �!�����
�"�
� #�$%�%�'&�(&

) *"+ �!��,�-
�"-�, ����.�/���,�-

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

F. Video Encryption Algorithm – Number 2

Shi and Bhargava [21] propose a different form of VEA.
In its initial incarnation the cipher encrypted the sign bits of
all AC and DC co-efficients within the bitstream. Each bit of
a binary key is XORed with the sign bits. When the key bits
are exhausted, the key is reused. The authors suggest regular
resynchronisation at the beginning of each Group Of Pictures
(GOP) by re-starting encryption from the beginning of the
key. The cipher was later modified [22, 23] to also encrypt
the sign bits of motion vectors.

The encrypted bitstream retains the MPEG-1 headers, so
this VEA can be successfully streamed in all playback modes
on existing servers.

In both algorithms the key is used directly in the XOR
operation (although it is possible to use a random bit
generator). The cipher is susceptible to a known plaintext
attack. An attacker extracts the corresponding sign bits from
the encrypted and plaintext streams, determines the pseudo-
random bit sequence (common to each GOP) and decrypts
the entire bitstream.

As for the Zig-Zag Permutation Cipher [18], decryption of
a VEA encrypted bitstream must be performed within the
MPEG-1 decoder. CPU utilisation is efficient as decryption
involves only a simple XOR for each coefficient. This
precludes use of a third-party MPEG-1 decoder.

G. Frequency Domain Scrambling Algorithm

The Frequency Domain Scrambling Cipher proposed by
Zeng and Lei [24, 25] operates on information encoded
within the Macroblock layer, in particular the DCT co-
efficients. (similar to the Shi and Bhargava VEA cipher
[23]). The cipher is strengthened by also considering:

� Encrypting refinement bits within coefficients – The
refinement (or least significant) bits of the coefficients
tend to have an even distribution and can be encrypted
without impacting on the compression rate.

� Block Shuffling – Divide the bitstream into a series of
blocks which are shuffled using a changing table. As only
the positions of Macroblocks within the stream are
changed, compression remains high.

� Block Rotation – Macroblocks are rotated pseudo-
randomly. The actual pixel values are unchanged and the
compression ratio is not affected.

The cipher is secure [24, 25]. The encrypted content can
be streamed as only the Macroblock data is modified,
thereby retaining header information required by servers to
provide indexed and high-speed streaming.

The Frequency Domain Scrambling Cipher is more reliant
on being implemented as part of the decoder than other

ciphers [24, 25]. The cipher complexity means that CPU
efficiency is only obtained if decryption occurs within the
decoding cycle, precluding use of third-party decoders.

H. A Unique Cipher

Griwodz et al [26] propose a unique algorithm for
protection of distributed video. A Poisson process is used to
select bytes from the original bitstream at pseudo-random
intervals. The selected bytes form a new bitstream which is
encrypted. Corresponding bytes from the original bitstream
are then corrupted, using nearby bytes to calculate a
statistically similar value. The corrupted bitstream is then
freely distributed. Decryption is performed by purchasing
the second bitstream of un-corrupted bytes and re-inserting
them into the corrupted bitstream.

Only 1% of the original bitstream need be corrupted to
render the file unplayable [26]. The authors envisage the
corrupted bitstream being freely available on local caches
while the smaller, encrypted bitstream is delivered from a
central server.

This system functions well in a 'download now and play
later scenario', but will not function in a streaming video
implementation. Existing streaming servers may not be able
to handle the randomly corrupted source bitstream. Indexed
and high-speed playback is also problematic. To insert the
un-corrupted bytes back into the bitstream, the current
bitstream position must be known. This position is usually
not available during streaming. Indexed and high-speed
playback modes ensure that the bitstream position does not
change incrementally, and locating the corrupted bytes in the
bitstream becomes impossible.

I. Multi-Layer Encryption

Tosun and Feng [27, 28] modify the VEA cipher of Qiao
and Narhstedt, breaking the 64 DCT co-efficients into three
separate layers. Lowest (most significant), mid-range and
highest frequency co-efficients are mapped into the Base,
Middle and Enhancement Layers respectively. Each layer
receives different transport characteristics - guaranteed
delivery for the Base Layer, high probability of delivery of
the Middle Layer, and low priority for the Enhancement
Layer (due to its low information content). The three
streams are recombined at the client prior to decoding and
display.

Only the Base and Middle Layers are encrypted. This
enables secure delivery over networks with limited capacity
– lower layers can be decrypted and displayed independently
of higher layers, resulting in poorer quality video rather than
discontinuities in playback. Unfortunately, the Multi-
Layered Cipher is not suitable for streaming video, suffering
the same issues as the original VEA algorithm. Also, not all
streaming server products support Layered Streaming.

�����
�����
	��� ���
�������������
������� �!�����
�"�
� #�$%�%�'&�(&

) *"+ �!��,�-
�"-�, ����. � ��,�-

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

J. Selective Macroblock Encryption

Alattar, Al-Regib and Al-Semari [29, 30] propose a set of
four ciphers which operate on the Macroblocks within the
MPEG-1 video stream:

1. Encrypt I-Macroblocks and predicted Macroblock
headers

2. Encrypt every nth I-Macroblock

3. Encrypt every nth I-Macroblock and predicted
Macroblock headers

4. Encrypt every nth I-Macroblock and every nth predicted
Macroblock header

Selected data is encrypted using DES, ensuring that the
video content is secure against all but Brute Force Attack
[16]. The authors recommend resetting the count for
determining the nth block at the start of each slice (ensuring
correct selection of Macroblocks within a slice if data is lost)
as well as periodically changing the DES key to make
attacking this cipher computationally infeasible.

This cipher is not suitable for streaming video. While
servers could stream the encrypted bitstream in all playback
modes, resynchronisation of the DES cipher in these
playback modes is not possible as we cannot determine
which frame is currently being played back.

K. AEGIS Algorithm

Spanos and Maples [31] propose AEGIS, which encrypts
the entire contents of the I-Frame and the Video Sequence
Headers. They change the bitstream by including extra start
and end point locational information. AEGIS is not suitable
for streaming video. Existing MPEG-1 streaming servers
cannot handle their non-standard bitstream format. Also,
while the authors suggest the encryption of I-Frames only
will secure the entire video, others [14] have shown that it is
also necessary to consider encryption of P and B-Frames.

IV. CONCLUSIONS

The protection of streaming video is an important aspect
of a streaming video implementation, encryption is one
means through which this could be achieved. When
considering a cipher for use in streaming video, it must be
compatible with existing streaming video implementations
[1, 3].

This paper explores the range of existing MPEG-1
encryption techniques and examines their suitability for use
with a range of existing streaming video servers. The
conclusion drawn is that none of the existing approaches are
suitable for use in streaming video and that a new MPEG-1
cipher that meets the requirements is required.

The requirements outlined for an MPEG-1 encryption
technique by But [3] are not incompatible, however existing
techniques do not meet these requirements. In future
publications I intend to describe a new MPEG-1 Partial
Encryption technique that does meet all of these
requirements and can be used to:

� Store encrypted video on existing streaming video
servers.

� Is scalable to support multiple concurrent streams.

� Stream in a variety of playback modes.

� Resynchronise decryption such that all playback modes
are supported.

� Be able of executing in real-time.

� Be secure against attack.

While MPEG-1 is an older video compression technique,
it shares many commonalities with MPEG-2, and thus
MPEG-1 ciphers can also be applied with little modification
to MPEG-2 bit streams. The MPEG-4 compression
algorithm differs from that used by MPEG-1 and MPEG-2,
but the conceptual cipher requirements outlined in [3] still
apply and should be kept in mind when considering
encryption of these bitstreams for Copyright protection
purposes.

ACKNOWLEDGMENTS

The work in this paper has been developed as part of the
primary author's PhD studies at Monash University,
Melbourne, Australia.

REFERENCES

[1] But, J., "Implementing Encrypted Streaming Video in a Distributed
Server Environment", Submitted to IEEE Multimedia, April 2004

[2] But, J. and Egan, G., "Designing a Scalable Video On Demand System",
International Conference on Communications, Circuits and Systems
(ICCCAS'02), pp. 559-565

[3] But, J., "Requirements for a Generic MPEG-1 Cipher to Function in an
Existing Streaming Server Emvironment", CAIA Technical Report
040426A, CAIA Swinburne University, Australia, April 2004,
http://caia.swin.edu.au/reports/040426A/CAIA-TR-040426A.pdf

[4] Lee, J., Hwang, S. O., Jeong, S-W., Yoon, K. S., Park, C. S. and Ryou,
J-C., "A DRM Framework for Distributing Digital Contents through the
Internet", ETRI Journal, vol. 25, no. 6, December 2003, pp 423-436

[5] Reisslein, M., Hartanto, F. and Ross, K. W., "Interactive video
streaming with proxy servers (extended version)", Tech. Rep., GMD
FOKUS, June 1999

[6] Wu, D., Hou, Y. T., Zhu, W., Zhang, Y-Q. and Peha, J. M., "Streaming
Video over the Internet: Approaches and Directions", IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11 no.
3, 2001, pp 402-414

[7] Gemmell, J., Vin, H. M., Kandlur, D. D., Rangan, P. V. and Rowe, L.
A., "Multimedia Storage Servers: A Tutorial", IEEE Computer, vol. 28
no. 5, May 1995, pp 40-49

�����
���	��
��� �	������� ��������������� ��� �	�������! 	" �#�%$	& � $

' (�) ����*�+���+�* ����,	-���*�+

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

[8] Lin, C-W., Zhou, J., Youn, J. and Sun, M-T., "MPEG Video Streaming
with VCR Functionality", IEEE Transactions on Circuits and Systems
for Video Technology, vol. 11 no. 3, 2001, pp 415-425

[9] Frimout, E. D., Biemond, J. and Lagendick, R. L., "Extraction of a
dedicated fast playback MPEG bit stream", Proceedings of the SPIE,
vol. 2501, 1995, pp 76-87

[10] Anderson, D. B., "A Proposed Method for Creating VCR Functions
using MPEG Streams", IEEE 12th International Conference on Data
Engineering, 1996, pp. 380-382

[11] Kent, S. and Atkinson, R., "Security Architecture for the Internet
Protocol", IETF RFC 2401, http://www.ietf.org/rfc/rfc2401.txt,
November 1998

[12] Kent, S. and Atkinson, R., "IP Encapsulating Security Payload (ESP)",
IETF RFC 2406, http://www.ietf.org/rfc/rfc2406.txt, November 1998

[13] Bozoki, E., "IP Security Protocols", Dr. Dobb's Journal, December,
1999, pp. 42-55.

[14] Qiao, L. and Nahrstedt, K., "Comparison of MPEG Encryption
Algorithms", Computers and Graphics, Vol. 22, 1998, pp. 437-448.

[15] Dierks, T. and Allen, C., "The TLS Protocol, Version 1.0", IETF RFC
2246, http://www.ietf.org/rfc/rfc2246.txt, January 1999

[16] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons ISBN 0-471-11709-9.

[17] Meyer, J. and Gadegast, F., "Security Mechanisms for Multimedia with
Examp[16]17le MPEG-1 Video", Tech. Uni. of Berlin, 1995

[18] Tang, L., "Methods for Encrypting and Decrypting MPEG Video Data
Efficiently", ACM International Multimedia Conference 96, November
1996, pp. 219-222

[19] Qiao, L., Nahrstedt, K. and Tam, M.-C., "Is MPEG Encryption by using
Random List instead of Zig-Zag order secure?" IEEE International
Symposium on Consumer Electronics, 1997

[20] Qiao, L. and Nahrstedt, K., "A New Algorithm for MPEG Video
Encryption", 1st International Conference on Imaging Science, Systems
and Technology (CISST97), 1997, pp. 21-29

[21] Shi, C. and Bhargava, B., "Light-weight MPEG Video Encryption
Algorithm", Multimedia98, 1998, pp. 55-61

[22] Shi, C. and Bhargava, B., "An Efficient MPEG Video Encryption
Algorithm", 17th IEEE Symposium on Reliable Distributed Systems,
October 1998, pp. 381-386

[23] Shi, C. and Bhargava, B., "A Fast MPEG Video Encryption Algorithm",
ACM Multimedia '98, 1998, pp. 81-88

[24] Zeng, W. and Lei, S., "Efficient Frequency Domain Video Scrambling
for Content Access Control", ACM Multimedia99, 1999, pp. 285-294

[25] Zeng, W., Wen, J. and Severa, M., "Fast Self-Synchronous Content
Scrambling by Spatially Shuffling Codewords of Compressed
Bitstreams", IEEE International Conference on Image Processing, 2002,
pp. 169-172

[26] Griwodz, C., Merkel, O., Dittmann, J. and Steinmetz, R., "Protecting
VoD the Easier Way", ACM Multimedia98, 1998, pp. 21-28

[27] Tosun, A. S. and Feng, W.-C., "Efficient Multi-layer Coding and
Encryption of MPEG Video Streams", IEEE International Computing
Expo, 2000, pp. 119-122

[28] Tosun, A. S. and Feng, W.-C., "A Light-weight Mechanism for Securing
Multi-Layer Video Streams", IEEE International Conference on
Information Technology: Coding and Computing, 2001, pp. 157-161

[29] Alattar, A. M. and Al-Regib, G. I., "Evaluation of Selective Encryption
Techniques for Secure Transmission of MPEG Video Bit-Streams",
IEEE Symposium on Circuits and Systems, 1999, pp. 340-343

[30] Alattar, A. M., Al-Regib, G. I. and Al-Semari, S. A., "Improved
Selective Encryption Techniques for Secure Transmission of MPEG
Video Bit-Streams", International Conference on Image Processing,
1999, pp. 256-260.

[31] Spanos, G. A. and Maples, T. B., "Security for Real-Time MPEG
Compressed Video in Distributed Multimedia Applications", IEEE 15th
Annual International Conference on Computers and Communications,
1996, pp. 72-78

�����
���	��
��� �	����������� ����������� �����	� � ���"!	# �$�&%	' � %

() * � ��+�, � ,�+ �����	- ��+�,

A
us

tr
al

ia
n

T
el

ec
om

m
un

ic
at

io
ns

 N
et

w
or

ks
 &

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

20
04

 (
A

T
N

A
C

20
04

),
 S

yd
ne

y,
 A

us
tr

al
ia

, D
ec

em
be

r
8-

10
 2

00
4

