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Abstract – Estimating the average time
between changes to objects on the Web has
many applications including content
distribution networks, search engines, web
site monitoring and measuring web
dynamics. This paper provides formulas for
estimating average object change interval
and efficient visit scheduling algorithms. We
show that the models developed are more
accurate and produce less server and
network load than previously devised
techniques.

I.     INTRODUCTION

This paper contributes efficient methods for a robot on
the Web to estimate the average change interval of
objects. We developed these techniques for use in
reasearch on the relationships between an object's change
interval and its ability to be cached in a content
distribution network, but they are also applicable to other
areas such as search engines, remote file backup systems
and data warehouses. For example, [1] and [2] show that
if a search engine is able to accurately estimate an
object's average change interval then it can keep more of
its index up to date.

By improving on previously studied formulas and
devising efficient visit scheduling algorithms, we have
developed models that on average use less bandwidth and
are more accurate than previously published models. No
previous estimates of average object change interval are
assumed and the model handles objects that do not report
the date of last change.

When estimating a web object's average change interval,
a number of constraints are involved:

� It is near impossible to obtain a complete change
history of an object 

� Many web servers do not provide the time of last
change.

� Sampling objects too frequently places unacceptable
load on servers and Internet links

� It may be impractical to sample over a long period of
time such as many years

Our models aim to achieve accurate results within these
constraints while minimising network traffic.

Table 1 introduces the terminology used in this paper.

Term Definition

Web object Any item that can be accessed using
HTTP

Visit A HTTP request to retrieve a web object

Visit
scheduling

The process of determining the next time
that an object should be visited 

Change Any variation in an object's response body
– we ignore changes in response headers
as some of these (e.g. Date header) are
designed to change for every response 

Detected
change

A change that is observed by the robot
visiting the object before the next change 

Undetected
change

A change that is not observed due to the
object changing again before the next visit

Average object
change interval

The average time between an object's
changes. (An object's rate of change is
the inverse of its average change interval )

Estimated
average
change interval

Average change interval calculated by the
robot after visiting an object

Visit interval The time between two visits (for example,
1 day)

Sampling
period

The time between the first visit and the
last visit (for example, 4 months)

Last-modified
date

Data in the HTTP response headers that
indicate the last time an object changed
(not provided for all objects)

Object age The amount of time since an object last
changed

Table 1. Terminology

II.RELATED WORK

Web robot scheduling has been explored in various
papers. [1] discusses robot scheduling policies that
minimize a cost function based on the fraction of time
that pages in an index are out-of-date. [2] focuses on
optimal robot scheduling in search engines based on
freshness and age metrics. Our study differs from these
papers in that our focus is estimating change intervals.

Formulas for estimating frequency of change (the inverse
of the average change interval) were developed in [3].
This paper extends those formulas by making them less
susceptible to irregular visit intervals and more accurate
when estimating average change intervals. [4] provides
alternative extensions to the formulas in [3], but these
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formulas require very intensive computations and their
accuracy is unknown.

Scheduling based on sampling of related documents is
discussed in [5], but for our studies we assumed that the
objects of interest were a broad range of unrelated URLs
where such a method cannot be used.

III.METHOD

The formulas and scheduling algorithms covered in this
paper were tested using a web object simulation [6] to
allow the comparison of actual (simulated) object change
intervals to those estimated under various conditions.
Many papers including [2] and [3] have shown that web
object changes can be accurately modeled as a Poisson
process and hence the simulator modeled the time
between changes using a negative-exponential model. (In
a Poisson process the time between events can be
modeled using a negative-exponential distribution.) The
simulator was able to simulate documents both with and
without last-modified date.

To evaluate our models we examine six scenarios, as
detailed in Table 2. Scenarios 1 and 3 use a fixed visit
interval with the estimation formulas suggested in [3].
We then compare these results to those obtained using
our formulas (Scenarios 2, 3, 5 and 6) and our scheduling
algorithms (Scenarios 3 and 6).

Last-Modified
Provided?

Estimation
Formula

Visit
Interval

Scenario 1 Yes See [3] 24 hours

Scenario 2 Yes See Section V 24 hours

Scenario 3 Yes See Section V Variable

Scenario 4 No See [3] 24 hours

Scenario 5 No See Section VI 24 hours

Scenario 6 No See Section VI Variable

Table 2.  Simulated scenarios

We assess the accuracy and efficiency of our models
using three metrics:

� Bias – The ratio of the mean estimate and the actual
value of an object's average change interval. Ideally
this ratio is 1 (i.e. the mean estimate and the actual
value are the same), making the estimate unbiased.

� Standard Deviation – A measure of the typical
difference between individual estimates and the mean
estimate. Ideally the standard deviation is very low
indicating that most estimates are very close to the
mean estimate.

� Visits per Object – The number of visits required to
make the estimate. Fewer visits will generally result
in lower network and server load.

IV.RESULTS

Figures 1a, 1b and 1c illustrate the bias, standard
deviation and visits per object for each of the six
scenarios described in Table 2. Where two different

scenarios produced similar results there plots have been
combined for clarity.

Figure 1a. Ratios of mean estimates to actual average
change intervals to illustrate bias. Note the small range
used on the Y-axis to add clarity.

Figure 1b. Standard deviation of estimates

Figure 1c. Mean visits per object
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The results show that compared to previous work
(scenarios 1 and 4) the formulas and scheduling
algorithms we have developed generally achieve results
with low bias and standard deviation while making fewer
visits than using a fixed visit interval. In the following
two sections we examine the formulas and scheduling
algorithms that we have developed and discuss these
results in more detail.

V.ESTIMATING OBJECT LIFETIME WITH LAST-MODIFIED DATE

An intuitive estimator of an object's average change
interval can be defined as:

However, this formula produces a large bias unless the
visit interval is much shorter than the average change
interval as it does not account for undetected changes
(see [3]).

In a Poisson process the expected time to the previous
event is equal to the expected time between events.
Hence a more accurate estimator of an object's average
change interval is to use the mean of the object ages over
all visits:

The age of an object is the difference between the last-
modified date and the date that it was retrieved.
totalAges is the sum of the ages over all visits. visits is
the number of times the object was visited.

[3] states that using this approach for estimating an
object's rate of change introduces bias when the visit
interval is much smaller than the object's average change
interval. Our simulations indicated that the bias was
caused by the inversion of the average change interval to
calculate rate of change. When the estimates are not
inverted they provide an unbiased estimator of an
object's average change interval (providing that a
constant visit interval is used).

The problem with a constant visit interval is that visiting
an object far more frequently than it changes does not
increase the accuracy of the results and hence creates
unnecessary network and server load. If we had an
estimate of an object's average change interval before we
started sampling then we could use this to select an
optimal visit interval, but often this information is not
available.

The general approach used to overcome these problems
was to construct an estimate of an object's average
change interval after each visit based on all the visits to-
date and then use this estimate to determine the
appropriate timing for the next visit.

Listing 1 shows the visit scheduling algorithm we
developed for objects with a last-modified date. The
algorithm does not require a prior estimate of average
change interval and avoids unnecessarily frequent visits.

After each visit chgIntervalEst is set to the current
estimate of the object's average change interval and
numChanges is set to the number of detected changes.
Next the getNextInterval function is called and it returns
the amount of time to wait before visiting an object again.
The function can also return -1 to indicate that the object
should not be visited again.

function getNextInterval() 
{
  if (numChanges >= MAX_CHANGES)
  {
    return -1;
  }
  interval = TARGET_INTERVAL;
  if (interval < chgIntervalEst/MAX_RATIO)
  {
    interval = chgIntervalEst/MAX_RATIO;
  }
  return interval;
}
Listing 1. Algorithm to calculate visit interval for objects with
a last-modified date.

The all upper-case identifiers are constant parameters.
The results shown in Figure 1 were obtained using the
parameter values shown below in Table 3.

MAX_CHANGES 100

TARGET_INTERVAL 1 day

MAX_RATIO 5

Table 3 – Example parameters for scheduling visits to objects
with a last-modified date

Using this scheduling algorithm did introduce a small
amount of bias (between 1% and 10%) for objects with
an average change interval of more than 7 days due to
variance in the access intervals. However, Figure 1c
shows that this algorithm substantially reduces the
number of visits to objects with a long average change
interval compared to a fixed 24 hour visit interval. The
standard deviation observed was very similar to a
constant 24 hour visit interval.

As shown in figure 1b, The standard deviation of the
estimates grows quite large for objects with a relatively
long average change interval, regardless of the visit
scheduling used. For example, the standard deviation is
39% for objects with an average change interval of 10
days. This variance is due to the relatively few changes
that can be observed during the sampling period – an
object with an average change interval of 10 days will
only change an average of 12 times during a 120 day
sampling period and the intervals between these changes
can vary significantly from the average change interval,
making the variance in the results unavoidable. The
affect of the high standard deviation is that individual
estimates cannot be considered accurate, but as the results
are unbiased, trends for a large group of objects can be
identified.

VI.ESTIMATING OBJECT LIFETIME WITHOUT LAST-MODIFIED

DATE

When the last-modified value was not provided for an
object (or could not be considered accurate) we could not

(2)

(1)
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calculate an object's age with sufficient accuracy to apply
the estimator previously discussed.

The estimator presented in [3] performs poorly when
using a variable visit interval and using a fixed visit
interval is inefficient unless we already have an estimated
average change interval. 

[4] presents an alternative estimator that does not assume
fixed visit intervals, but this estimator cannot be quickly
computed for a large number of documents and as such it
is not scalable.

We have modified the estimator in [3] to reduce the bias
caused by irregular access. Our new estimator is shown
below.

totalUnchangedTime is the total of the visit intervals
during which the object does not change.
avgChangeInterval' is an initial estimate of the average
change interval that exhibits bias as the estimate
approaches the sampling period due to the distribution of
the estimates. avgChangeInterval' can be inverted to
obtain an unbiased estimate of the average rate of change.
The final formula corrects the bias in avgChangeInterval'
for estimating the average change interval.

This estimator is most accurate when the visit interval is
close to the object's average change interval, so we base
our scheduling algorithm on a function that uses an
estimate of the object's average change interval from
previous visits as the next visit interval. However, this
introduces a number of issues that must also be addressed
in our scheduling algorithm:

� We need a lower limit on the visit interval so that we
do not overload the network or the server by using
very short visit intervals

� We need to stop sampling once a certain number of
changes have been detected – otherwise objects that
have a very short average change interval will
consume excessive resources

� Some objects should be visited more frequently to
ensure that a sufficiently large number of visits are
made during the sampling period. For example, if an
object has an average change interval of 3 days and
we were using a sampling period of 120 days then
visiting it once every 2 days provides additional
accuracy over visiting it once every 3 days.

Listing 2 shows the algorithm developed for use where
the last-modified date is not available. The function is

called in the same way as the function used where the
last-modified date is available.

function getNextInterval() 
{
  if (numChanges >= MAX_CHANGES) 
  {
    return -1;
  }

  interval = chgIntervalEst;

  if (interval > SOFT_MAX_INTERVAL) 
  {
    interval = SOFT_MAX_INTERVAL;

    if (interval <
              chgIntervalEst/MAX_RATIO) 
    {
      interval = chgIntervalEst/MAX_RATIO;
    }
  }

  if (interval <= MIN_INTERVAL) 
  {
    return MIN_INTERVAL;
  }
  else 
  {
    return interval;
  }
}

Listing 2. Algorithm to calculate visit interval for objects
without a last-modified date.

Table 4 shows a set of parameters for use with a 120 day
sampling period that are able to match the accuracy of a
fixed visit interval, but over a greater range of average
change intervals and making less visits per document in
many cases.

MAX_CHANGES 100

SOFT_MAX_INTERVAL 2 days

MAX_RATIO 3

MIN_INTERVAL 10 minutes

Table 4. Example parameters for scheduling visits to
objects without a last-modified date

Figure 1 shows that compared to visiting objects once
every 24 hours (scenario 5), the adaptive scheduling
algorithm (scenario 6) greatly increases the range of
change intervals where bias and standard deviation are
acceptably low. This algorithm produces reasonably
accurate results for objects with an average change
interval of half the minimum visit interval. For example,
objects with an average change interval of 5 minutes
produce estimates that are 0.85% biased and have a
standard deviation of 11.7%. This is a definite
improvement over a fixed 24 hour visit interval which
only achieves bias of less than 1% when the average
change interval exceeds approximately 9 hours.

The estimates also become biased as the object's average
change interval approaches the sampling period. For
example, the estimates are more than 5% bias in scenario
6 when the average change interval is more than 40 days.
This is because without a last-modified date it is not
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possible to make estimates that are larger than the
sampling period and hence as the probability of an object
remaining unchanged for the duration of the sampling
period increases, the bias also increases. This highlights
the need to use a sampling period of at least three times
the object's average change interval (or longer still if low
standard deviation is also important).

VII.NETWORK AND SERVER LOAD

It is important to consider the impact of our visit
scheduling algorithms on network and server loads.
Many previous studies have visited objects once per day.
Figure 1c compares the visits per object for our
scheduling algorithms to a fixed 24 hour visit interval. It
can be seen that in most cases the adaptive visit
scheduling algorithms produce less visits per object. In
[7] it is estimated that the average age of an object on the
web is 62 days (approximately 90,000 minutes) – at this
level both the adaptive visit scheduling algorithms result
in a significant bandwidth saving of at least 75%
compared to daily visit scheduling.

One drawback of using the adaptive visit interval when
the last-modified date is not available is that the average
visit interval is short at the start of the sampling period
and this may cause additional network and server load
during this time. However, in most cases the overall
network and server load will be less as longer visit
intervals are used later in the sampling period.

VIII.FUTURE WORK

The algorithms described in this paper have not been
verified with real data – they rely on simulations of a
Poisson process which has been shown by others to be a
reasonable model for object changes on the Internet.
Practical verification of these algorithms is important, but
will take months and many gigabytes of bandwidth to
complete. Furthermore it would be useful to analyse the
performance of these algorithms for objects whose
changes cannot be modeled by a Poisson process – for
example objects that change at the same time each day.

HTTP/1.1 provides a number of features that can be used
to reduce the network and server load. Two of the most
useful are conditional requests, which allow a client to
request a document if it has changed since it was last

retrieved, and content compression. These features are
optional and hence are not supported for all objects, but
they provide significant benefits when they can be used.
Using these features to reduce network and server load is
not explored in this paper, but the extent of their
availability and usefulness to change interval estimation
could be the subject of future work.

IX.    CONCLUSION

Estimates of average object change interval exhibit a high
variance when few changes occur during the sampling
period. Hence it is critical to use a sampling period that
is much longer than the change intervals being measured
when results for indvidiual objects are important. Trends
in a large number of documents can be accurately
identified, although the distribution of the results tends to
be smoother than the true data due to high standard
deviation of the estimates. These limitations are
primarily due to the variance in input data and we believe
that they are unavoidable.

When a suitably long sampling interval is used the
formulas and scheduling algorithms we have developed
can give results that are more accurate than those
presented previously while  placing significantly less load
on the server and network links. These results can
provide benefits to a range of applications including
content distribution networks, search engines, web site
monitoring  and measuring web dynamics 
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