
Construction and Scheduling of Extrapolated Parity
Packets for Dead Reckoning in Network Gaming

Gene Cheung
Hewlett-Packard Laboratories Japan

3-8-13, Takaido-higashi
Suginami-ku, Tokyo, Japan 168–0072

gene-cs.cheung@hp.com

Takashi Sakamoto
Hewlett-Packard Laboratories Japan

3-8-13, Takaido-higashi
Suginami-ku, Tokyo, Japan 168–0072

takashi.sakamoto@hp.com

delay network
loss &

x[n]

y[m]

input updates x[n] ^

API

EPP 

update
reconstructor

constructor

sender−side receiver−side

application layer
transport layer

x’[n]

y’[m]

z[n]

DR

output updates x[n+D]

Figure 1: System Overview of EPPs

ABSTRACT
Game update packets of typical First Person Shooting (FPS)
network games, small and of delay-sensitive and self-healing
characteristics, are disseminated periodically among play-
ers for dead reckoning (DR) to predict the current locations
of the opposing avatars. To improve delivery of these up-
dates over networks with substantial packet losses and trans-
mission delays, we propose the use of Extrapolated Parity
Packets (EPPs). EPPs are application-aware parity packets
that can fully recover missing game updates or prediction
information. Our proposed scheduling of EPP makes max-
imal use of the available network bandwidth. Experiments
showed noticeable improvements in prediction accuracy at
receiver using EPP schemes over non-EPP schemes.

1. INTRODUCTION
In a typical First Person Shooting (FPS) network game

[1, 2], game updates of a player’s avatar are packetized and
disseminated to all others periodically [3]. The most recent
window of updates, containing time-varying information like
an avatar’s coordinates in the virtual world, are used by a
position prediction procedure called dead reckoning [4], run-
ning at each player’s terminal, to predict current locations of
opposing avatars’ for rendering on a player’s display screen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors.
NetGames ’07, September 19-20, 2007, Melbourne, Australia
.

Game update packets are, first of all, very small — typically
much fewer than 100 bytes — when compare to other multi-
media data packets like video. They are delay-sensitive; the
sooner they are delivered, the more accurate dead reckon-
ing can predict an avatar’s current location based on them.
They are also self-healing ; lost updates in a window will
be subsumed by the next window, which provides more re-
cent and hence more valuable information. We focus on the
delivery of game updates in this paper.

To improve transport of this unique data type for net-
works with substantial packet losses and/or transmission
delay like 3G cellular networks [5], we propose the use of
a new, game-update specific redundancy packet type called
Extrapolated Parity Packets (EPPs). Like a parity packet
in a Reed Solomon (RS) (n, n− 1) code for packetized mul-
timedia streaming [6], redundant information contained in
each EPP can be used to recover perfectly information lost
in one of n − 1 source packets. Moreover, each individual
EPP can also be used to convey prediction information even
in multiple-loss scenarios.

The outline of the paper is as follows. After a review of re-
lated works in Section 2, we present a theoretical discussion
of dead reckoning in Section 3. We then give an overview
of EPPs in Section 4. We discuss construction of EPPs in
Section 5. In Section 6, we discuss different packetization
methods for EPPs. In Section 7, we show how to schedule
EPPs to maximally utilize bandwidth for performance. Fi-
nally, results using theoretical models and real game traces
and conclusions are presented in Section 8 and 9, respec-
tively.

2. RELATED WORK
Latency has long been casted as a major hurdle for net-

work games [3]. Dead reckoning (DR) [4, 7]—predicting
the current position of an avatar based on previous location
updates—is often used to create the illusion of low-delay
interactivity. Among published works, [4] evaluated differ-
ent DR schemes experimentally for sports, action and racing
games, while [7] proposed the use of globally synchronized
clocks to improve accuracy of DR schemes. No matter what
DR scheme is used, DR has the inherent drawback that the
differences between predicted and actual avatar locations
can lead to temporary inconsistencies of global game states
at different players. This can potentially lead to bizarre
phenomena, like “A Dead Man that Shoots” and “A Flying
Tank” examples in [8]. These global state inconsistencies
must be fixed using time traceback algorithms like timewarp

[9] to reconstruct the definitive order of state changes by

61



different players, who disseminate game events [8] contain-
ing these state changes to other players or an authoritative
server. Instead of game events, in this paper we narrow our
focus to improving the delivery of game updates to minimize
DR prediction errors.

In addition to latency, packet losses in the delivery net-
work can also influence user performance [10] and game
consistency [11]. Among traditional transport repair mech-
anisms, ARQ (Automatic Retransmission Request) would
work poorly due to the mismatch of long retransmission de-
lay and the hyper delay sensitivity of game updates. FEC
(Forward Error Correction) like the popular Reed Solomon
code [6], on the other hand, is feasible, and in fact EPP can
be viewed as an application-aware form of FEC.

3. OPTIMAL DEAD RECKONING
In this section, we first introduce theoretical motion mod-

els of avatars that we will use extensively for our analysis.
Avatar motion models are random processes that model ac-
tual movements of avatars over time probabilistically. We
then discuss the derivation of the optimal DR scheme for a
given motion model in a statistical sense. Motion models of
avatars and corresponding optimal DR schemes are used in
the development of EPP later in Section 5.

3.1 Avatar Motion Models
The first motion model is a random displacement model

(rd), where the position of avatar at the next time unit
x[n+1] is the current time unit x[n] plus a random variable
w[n]. w[n] is zero-mean with variance σ2

w. rd is written as:

x[n + 1] = x[n] + w[n] (1)

D time unit later, x[n + D] can be written alternatively as:

x[n + D] = x[n] +
D

X

i=1

w[n + D − i] (2)

We can similarly define a random velocity model (rv),
where the instantaneous velocity of the next point v[n + 1]
is the current instantaneous velocity v[n] = x[n] − x[n − 1]
plus random variable w[n]. The new position x[n+1] is then
the previous position x[n] plus the change resulted from the
new instantaneous velocity v[n] + w[n]:

x[n + 1] = x[n] + (v[n] + w[n])

= 2x[n] − x[n − 1] + w[n] (3)

D time unit later, x[n + D] can be written alternatively as:

x[n+D] = (D +1)x[n]−Dx[n−1]+

D
X

i=1

i w[n+D− i] (4)

Finally, we can define a random acceleration model (ra),
where the instantaneous acceleration of the next point a[n+
1] is the current instantaneous acceleration a[n] = v[n] −
v[n − 1] plus a random variable w[n]. The new velocity is
then v[n] + a[n], and the new position x[n + 1] is:

x[n + 1] = x[n] + (v[n] + a[n])

= 3x[n] − 3x[n − 1] + x[n − 2] + w[n] (5)

D time unit later, x[n + D] can be written alternatively as:

x[n + D] = α0[D] x[n] + α1[D] x[n − 1] + α2[D] x[n − 2]

+
D

X

i=1

α2[i] w[n + D − i] (6)

where the coefficients α0[k], α1[k] and α2[k] are:

α0[k] = 3 +
k
X

i=2

(i + 1) α1[k] = −3−

k
X

i=2

(2i + 1) α2[k] =
k
X

i=1

i

respectively.

3.2 Deriving Optimal DR Schemes
Given an avatar motion model, we now derive the optimal

DR scheme in statistical sense. More specifically, given the
current set of game updates, {x[n], x[n − 1], . . .}, we find
the optimal prediction x̂[n + D] = A0x[n] + A1x[n − 1] +
. . ., where D ≥ 1 is the time unit into the future we are
predicting, such that the expected prediction square error
E = E[(x̂[n + D] − x[n + D])2] is minimized. For rd, if we
set A0 = 1 and Ai = 0, i ≥ 1, using (2) we get:

E = E

2

4

 

x[n] −

 

x[n] +
D
X

i=1

w[n + D − i]

! !2
3

5

= E

2

4

 

D
X

i=1

w[n + D − i]

!2
3

5 = DE[w2[n]] = Dσ2
w

where line 2 follows because w[n + D − 1], . . . , w[n] are
zero-mean, independent and identically distributed random
variables. Because w[n+D−1], . . . , w[n] are also each inde-
pendent from set {x[n], x[n − 1], . . .}, we can do no better,
and x̂[n+D] = x[n] is the best prediction in statistical sense
for model rd. We denote DR scheme x̂cd[n + D] = x[n] as
constant displacement cd.

Using similar argument, we can derive the optimal DR
schemes for motion model rv and ra respectively as:

x̂cv[n + D] = (D + 1)x[n] − Dx[n − 1] (7)

x̂ca[n + D] = α0[D] x[n] + α1[D] x[n − 1]

+α2[D] x[n − 2] (8)

where in each case, DR makes a prediction such that the
expected prediction square error only involves random vari-
able w[n + D − 1], . . . , w[n]. We denote these corresponding
optimal DR schemes as constant velocity cv and constant

acceleration ca, respectively.

4. OVERVIEW OF EXTRAPOLATED PAR-
ITY PACKETS (EPP)

We first overview the operation of EPPs shown in Figure
1. The sender-receiver pair can be peer-peer in a P2P sys-
tem, or server-client if updates are routed through a game
server in a server-client architecture. At sender, game up-
dates x[n]’s of period T , generated at the application layer,
are passed down to the transport layer via a set of pre-
defined Application Programming Interfaces (APIs). EPP

Constructor constructs Extrapolated Parity values (EP) y[m]’s
using updates x[n]’s, packetizes and transmits them over the

62



x(t)

t
0 T 2T 3T 4T

game updates
extrapolated parity value

window of relevant updates

5T

Figure 2: Extrapolated Parity Value (EP) for D = 2

delivery network. The receiver’s update reconstructor re-
ceives delayed packets containing y′[m]’s and x′[n]’s, recon-
structs updates z[n]’s, and forwards them to DR to predict
x̂[n + D]’s, where D is the average network delay in up-
date periods from sender to receiver. Alternatively, update
reconstructor can reconstruct and send x̂[n + D]’s directly
to the application, bypassing DR. Note that in our system,
DR resides in the transport layer, meaning that the receiver
only needs to display avatars at location x̂[n + D] at time
(n + D)T without prediction. The problem is how to con-
struct the transport blocks such that the receiver’s expected
prediction square error is minimized.

We assume a sender-receiver connection of available band-
width C bits per second (bps), while the transmissions of
game updates of period T , if packetized individually, con-
sume only R bps, where R < C. C can be found, for exam-
ple, using a TCP-friendly Rate Control (TFRC) algorithm
[12] on the wired network, or obtained during session setup
between wireless client and the UMTS basestation of 3G
network [5]. We packetize and schedule EP y[m]’s using
extra bandwidth C − R. Note that the extra bandwidth
cannot be filled simply with more frequent updates with
period T ′ < T for several reasons. First, bandwidth C is
a fast time-varying quantity, and it is unreasonable to ex-
pect the application to quickly adapt as C varies. Second,
as shown in [13], players receiving different frequencies of
updates can lead to unfair game play. That means update
frequencies should be fixed at the application in accordance
to computation and fairness criteria. We next discuss the
construction of Extrapolated Parity values (EP).

5. CONSTRUCTION OF EP
We perceive game updates as discrete samples x[n]’s, n ∈

I, of a continuous time signal as shown in Figure 2, where
x(t) can be the x-coordinate of an avatar’s location at time
t. To construct an EP, we essentially perform DR at sender:
we predict the Dth sample into the future y[n + D] (white
circle) using a window of known samples x[n], . . . , x[n − l]
(black circles) called the window of relevant updates. EP
y[n + D] performs two functions:

1. In scenario of single loss in x[n], . . . , x[n−l], EP acts as
parity so that the lost update in the window of relevant
updates can be perfectly reconstructed.

2. In scenario of multiple losses in x[n], . . . , x[n − l], EP
acts as prediction x̂[n + D] so that x[n + D] can still
be accurately predicted as if no loss has occurred.

While RS(n,n−1) code can also perfectly recover one da-
tum loss in n− 1 data by adding one parity, EP can lead to
the same predicted x̂[n + D] even in multi-loss scenarios by
being prediction x̂[n + D] itself. Implementationally, when
EP acts as parity, update reconstructor passes the recon-
structed x[n]’s to DR to predict x̂[n + D]. When EP acts
as prediction, update reconstructor bypasses DR and sends
EP as predicted x̂[n + D] directly to application.

Corresponding to the three motion models in Section 3.1,
we now discuss in details three EP (re)construction methods.

5.1 Extrapolated Displacement
For motion model rd, by performing cd at sender, we

basically set EP y[n + D] to the most recent update x[n].
Obviously, if x[n] is lost in the network, y[n + D] can be
used as an identical replacement for x[n], and the delivery
of either x[n] or y[n +D] at receiver would lead to the same
prediction x̂[n + D] = x[n] at time (n + D)T . We call this
EP (re)construction method extrapolated displacement xd.

5.2 Extrapolated Velocity
For motion model xv, by performing cv at sender, we set

EP y[n + D] = x̂cv[n + D] using (7). If only x[n] is lost, we
can perfectly recover x[n] using y[n + D] and x[n − 1]:

x[n] =
y[n + D] + Dx[n − 1]

D + 1
(9)

Alternatively, if only x[n−1] is lost, we can perfectly recover
x[n − 1] using y[n + D] and x[n − 1] by:

x[n − 1] =
(D + 1)x[n] − y[n + 1]

D
(10)

Hence y[n + D] fulfills the role of parity. If both x[n] and
x[n−1] are lost, then y[n+D] = x̂cv[n+D] will act as predic-
tion and be sent directly to the application by update recon-
structor at time (n+D)T . We call this EP (re)construction
method extrapolated velocity xv.

5.3 Extrapolated Acceleration
For motion model xa, by performing ca at sender, we set

EP y[n + D] = x̂ca[n + D] using (8). If only x[n] is lost, we
recover x[n] at receiver using other received data y[n + D],
x[n − 1] and x[n − 2] as follows:

x[n] =
y[n + D] − α1[D] x[n − 1] − α2[D] x[n − 2]

α0[D]
(11)

If only x[n − 1] is lost, we recover it using:

x[n − 1] =
y[n + D] − α0[D] x[n] − α2[D] x[n − 2]

α1[D]
(12)

Finally, if only x[n − 2] is lost, we recover it using:

x[n − 2] =
y[n + D] − α0[D] x[n] − α1[D] x[n − 1]

α2[D]
(13)

Hence y[n+D] fulfills the role of parity. If two or more data
among set {y[n + D], x[n], x[n − 1], x[n − 2]} are lost, then
EP y[n + D] will act as prediction and be sent directly to
the application by update reconstructor. We call this EP
(re)construction method extrapolated acceleration xa.

63



6. PACKETIZATION OF EP
We assume that before an EP can be generated, updates

x[n]’s are sent as individual update packets T seconds apart
as they normally would under lossless environment. Be-
fore an EP is sent, we can estimate the expected prediction
square error over a delayed and lossy network by different
optimal DR schemes corresponding to different motion mod-
els as follows. For rd, we approximate the expected error
E[θcd] resulting from DR scheme cd at receiver by condi-
tioning on whether packet x[n] sent at time nT arrives at
(n + D)T ; we denote by p[D] the transmission probability
that a packet is correctly delivered from sender to receiver
in time interval D ∗ T . If not, we assume packet x[n − 1]
arrived in time interval (D +1)T ; this is a good approxima-
tion when the probability of transmission failure 1− p[D] is
small. Using (2), we write:

E[θcd] ≈ p[D]σ2
wD + (1 − p[D])p[D + 1]σ2

w(D + 1) (14)

For rv, we can approximate the expected error E[θcv] sim-
ilarly, except now we need to consider two packets, x[n] and
x[n − 1] for example, for each term. Using (4), we write:

E[θcv] ≈
1

Y

i=0

p[D + i]σ2
w

D
X

i=1

i2 (15)

+(1 − p[D])
2

Y

i=1

p[D + i]σ2
w

D+1
X

i=1

i2

For ra, we now need to consider three packets, each sent
T seconds apart. Using (6), we write:

E[θca] ≈

2
Y

i=0

p[D + i]σ2
w

D
X

i=1

α2[i]
2 (16)

+(1 − p[D])
3

Y

i=1

p[D + i]σ2
w

D+1
X

i=1

α2[i]
2

When an EP y[n + D] is generated using the window of
relevant updates x[n], . . . , x[n − l], we have two options to
packetize y[n + D], which we discuss next.

6.1 Piggyback Packetization
First, we can piggyback y[n + D] into the same packet

as x[n]; we call this piggyback packetization of EP. As men-
tioned in the Introduction, unlike other multimedia data
packets like video, the size of a game update packet is very
small, with the majority consumed by packet headers. By
piggybacking EP y[n + D] onto update packet x[n], we can
amortize the cost of packet header across two data. The
drawback of piggyback packetization is that the loss of one
piggyback packet will mean the loss of both update x[n] and
EP y[n + D].

For motion model rd, piggybacking prediction x̂cd[n + D]
onto update x[n] make no sense, because x̂cd[n + D] = x[n].

For motion model rv, by piggybacking prediction x̂cv[n +
D] onto update x[n], we can estimate the receiver’s expected
prediction square error E[ΘP

xv] as follows:

E[ΘP
xv] ≈ p[D] σ2

w

D
X

i=1

i2 + (17)

+(1 − p[D])
2

Y

i=1

p[D + i] σ2
w

D+1
X

i=1

i2

������
������
������
������
������
������
������

������
������
������
������
������
������
������

V

C−R

L H+L

1

Figure 3: Token Bucket for Packetization and
Scheduling of EPs at Sender

For motion model ra, by piggybacking prediction x̂ca[n +
D] onto update x[n], we can estimate error E[ΘP

xa] as:

E[ΘP
xa] ≈ p[D] σ2

w

D
X

i=1

α2[i]
2 + (18)

+(1 − p[D])

3
Y

i=1

p[D + i] σ2
w

D+1
X

i=1

α2[i]
2

Note that within a piggyback EPP, differential coding can be
used among data to reduce the size of the packet payload.
We consider the effect secondary and did not pursue this
direction in this paper, however.

6.2 Independent Packetization
Alternatively, we can send EP y[n + D] separately as an

independent packet immediately after x[n] is sent. While
this independent packetization induces the cost of a packet
header, the loss of update x[n] will not mean the loss of EP
y[n + D] because they are sent as separate packets.

For motion model rd, the expected error E[ΘI
xd] is:

E[ΘI
xd] ≈ (p[D] + (1 − p[D])p[D]) σ2

w D (19)

For motion model rv, the expected error E[ΘI
xv] is:

E[ΘI
xv] ≈

 

p[D] + (1 − p[D])
1
Y

i=0

p[D + i]

!

σ2
w

D
X

i=1

i2 (20)

For motion model ra, the expected error E[ΘI
xa] is:

E[ΘI
xa] ≈

 

p[D] + (1 − p[D])
2
Y

i=0

p[D + i]

!

σ2
w

D
X

i=1

α2[i]2 (21)

where in (19), (20) and (21) we again consider only event of
receipt of the first packet, and event of loss of the first packet
and receipt of subsequent window of relevant updates.

7. SCHEDULING OF EP
Given there are two methods to packetize EPs, in this

section we discuss scheduling of EPs—when to use which
method at sender, given extra bandwidth C−R, to minimize
expected receiver’s prediction square error. We first discuss
how to optimize the selection of packetization methods in
Section 7.1. We then discuss how the optimized selection is
implemented in Section 7.2.

7.1 Optimizing Packetization Method
Aside from motion model rd where xd EPs must be sent as

independent packets, the selection between piggyback and

64



T T T

x[1] x[2] x[3]
game 
updates

T time2T 3T

y[2+D]

0

y[3+D] EP

δ1 δ2
L H+L

x[0]

Figure 4: Example Scheduling of EPs at Sender

independent packetization involves a tradeoff between ex-
pected error and bandwidth usage. Piggyback packetiza-
tion amortizes packet header among two data, but the loss
of the same packet leads to two data losses, resulting in a
high expected error. In contrast, the bandwidth cost of in-
dependent packetization is high due to the need of a packet
header, but the independent delivery of updates and EPs
lead to a lower expected error. In general then, the optimal
packetization method is one that optimizes this tradeoff.

Let H be the size of a packet header and L be the size of
the EP packet payload containing an EP. When we use inde-
pendent (piggyback) packetization, given extra bandwidth
C − R, the smallest period T I (T P ) at which we can send
EPs is:

1

T I
=

C − R

H + L

1

T P
=

C − R

L
(22)

The resulting expected error of each packetization method
is scaled by how often the packetization method can be used
given its period and the game update period T . The op-
timization problem is to simply find the method with the
smaller of the two resulting expected errors. For motion
model rv, we can write:

min
m∈{I,P}

„

T m − T

T m

«

E[Θm
xv] +

„

T

T m

«

E[Θcv]

ff

(23)

for T m > T . Same (23) can be used for motion model xa,
with subscripts xv and cv replaced by xa and ca.

7.2 Scheduling Implementation
To implement the schedule in Section 7.1 such that ex-

cess bandwidth C − R is maximally utilized, we implement
the timed release of an EPP using a token bucket, shown in
Figure 3. A continuous input flow of tokens of C − R bps
fills a bucket. When the volume in the token bucket reaches
the size of an EPP (L or H + L, depending if piggyback
or independent packetization is used), an EPP is permitted
immediately; however, it is generated and sent at the next
update transmission time. This is done so that the predic-
tion y[n + D] is sent as close to the most recent update x[n]
as possible to maximize its effectiveness. When an EPP is
sent, volume L or H + L of the bucket is drained.

An example usage of the token bucket for the scheduling
of EPs is shown in Figure 4. Game updates x[0], . . . , x[3]
are sent period T apart. At time T + δ1, a piggyback packet
is permitted by the token bucket. Sender waits till time
2T before constructing prediction y[2 + D] and sending it
with x[2] in the same packet. Volume L is then drained
from the token bucket. Alternatively, at time 2T + δ2, an
independent packet is permitted. Sender waits till time 3T
before constructing y[3+D] and sending it as an independent

Table 1: DR Prediction Error for Different Avatar
Motion Models (update rate = 10/s)

rd .05 rd .1 rv .05 rv .1 ra .05 ra .1
raw 4.83 4.95 5.71 6.28 7.53 10.97
EP-p — — 5.55 5.92 6.41 7.28
EP-i 4.51 4.55 4.63 4.74 4.76 4.98

packet. Volume H + L is then drained from the bucket.
At receiver, based on arrived packets at time (n + D)T ,

update reconstructor essentially sends the best prediction
x̂[n + D], whether from DR or from received EPs, to the
application for scene rendering.

8. SIMULATION EXPERIMENTS
We discuss the simulation experiments we performed to

test the effectiveness of EPPs. We first detail the exper-
imental setup in Section 8.1. We then present theoretical
and game trace results in Section 8.2 and 8.3, respectively.

8.1 Setup
For the theoretical experiments, we use the following def-

inition for random variable w[n]:

w[n] =

8

<

:

0 with Pr = p
U [0, S) with Pr = 0.5(1 − p)
−U [0, S) with Pr = 0.5(1 − p)

(24)

where U [0, S) is the uniform random variable between 0 and
S, where S = 10 is a pre-defined scaling constant. w[n] is
weighted so that w[n] = 0 with probability p = 0.5.

For p[D], the transmission probability that a packet will
be correctly delivered in interval D ∗ T , we use:

p[D] = (1 − q)

Z DT

0

Γ(τ )dτ (25)

where q is the packet loss probability and network delay
Γ(τ ) is the shifted Gamma distribution with parameters
(κ, α, λ) = (50ms, 3, 0.1) and mean 80ms.

For the game trace experiment, we first collected 10 min-
utes worth of game updates from FPS games bzflag [1] and
sauerbraten [2]. The method used in capturing the updates
is as follows. Two clients were actively participating in the
FPS game over a low-delay, low-loss LAN. When periodic
updates from client2 reached client1, a packet filter was
used at client1 to capture the arriving update packets.

We assume packet header is 28 bytes and packet payload is
25 bytes for all experiments. We assume both x and y coor-
dinates are generated, and the calculated Euclidean distance

between actual and prediction location is used as metric of
performance. Each data point is average over 100 trials of
more than 1000 avatar locations each.

8.2 Theoretical Results
We first examined the performance of EPP when game

updates were generated using the avatar motion models de-
scribed in Section 3.1. Using update rate 10/s and band-
width of 10kbps, we calculated the average DR prediction er-
ror in Euclidean distance for no-EPP scheme (raw), scheme
using EPP with piggyback packetization (EP-p) and scheme
using EPP with independent packetization (EP-i) for differ-

65



5 6 7 8 9 10
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Banndwidth in kbps

D
R
 
p
r
e
d
i
c
t
i
o
n
 
e
r
r
o
r

DR prediction error vs. Bandwidth

 

 

xd

xc

xa

Figure 5: Prediction Error vs. Available Bandwidth
for Different Motion Models

Table 2: DR Prediction Error for Different Avatar
Motion Models (update rate = 15/s)

rd .05 rd .1 rv .05 rv .1 ra .05 ra .1
raw 6.44 6.54 10.00 10.72 15.74 21.51

EP-p — — 9.78 10.20 15.65 16.64
EP-i 6.12 6.17 8.77 8.97 14.60 14.78

ent combination of motion models and loss rates in Table
1.

We see that by using EPP, we can reduce prediction er-
ror by 8.2% for motion model rd, by 24.5% for rv, and by
54.6% for ra. We see also that independent packetization
performed better than piggyback packetization for the ex-
perimental parameters we have chosen.

For the same experimental parameters, we also plotted
the performance of EP-i as function of available bandwidth
in Figure 5. We see that as bandwidth increased from 5kbps
to 10kbps, the prediction error decreased dramatically, par-
ticularly for xa. We also see the performance improvement
trailed off after a certain point.

For the same experimental setup, we increased the up-
date rate to 15/s and calculated the performance for the
three schemes in Table 2. We see that the performance im-
provements for the three motion model rd, rv and ra over
non-EPP scheme have decreased to 5.6%, 16.3% and 31.3%,
respectively. We conjecture the following: as update rate
increases, D increases for the same average network delay,
and so it becomes more difficult for DR to predict an update
further into the future.

8.3 Game Trace Results
We now compare the performance of EPPs using collected

Table 3: DR Prediction Error for Real Game Traces
using Different EPs (update rate = 10/s)

Bzflag .05 Bzflag .1 Sauer .05 Sauer .1
raw 13.47 14.04 3.39 3.57
xd 12.02 12.24 3.37 3.43
xv 7.29 7.45 1.51 1.51

xa 12.35 12.80 2.38 2.42

game traces. In Table 3, we see a comparison of the different
methods for the two FPS game data sets for two different
loss rates. We first observe that performances with EPP
exceeded performance without EPP. We next observe that
xv performed the best: up to 47.0% for bzflag and up to
57.6% for sauerbraten over non-EPP raw. This can be
explained by the fact that motion model rv matches the
movements in both game traces the best.

9. CONCLUSIONS
In this paper, we discuss the construction and scheduling

of Extrapolated Parity Packets (EPPs) for network gaming
over lossy networks with delays. Unlike like Reed Solomon
(n, n−1), EPPs can correctly convey prediction information
even when multiple losses occur.

10. REFERENCES
[1] “bzflag,” http://www.bzflag.org.
[2] “sauerbraten,” http://sauerbraten.org.
[3] G. Armitage, M. Claypool, and P. Branch, Networking and

Online Games: Understanding and Engineering
Multiplayer Internet Games, John Wiley and Sons Ltd,
2006.

[4] L. Pantel and L. Wolf, “On the suitability of dead
reckoning schemes for games,” in ACM SIGCOMM
NetGames, Braunschweig, Germany, April 2002.

[5] H. Holma and A. Toskala, Eds., WCDMA for UMTS:
Radio Access for Third Generation Mobile
Communications, Wiley, 2001.

[6] P. Frossard, “FEC performance in multimedia streaming,”
in IEEE Communications Letters, March 2001, vol. 5, no.3.

[7] S. Aggarwal, H. Banavar, and A. Khandelwal, “Accuracy in
dead-reckoning based distributed multi-player games,” in
ACM SIGCOMM NetGames, Portland, OR, August 2004.

[8] M. Mauve, “How to keep a dead man from shooting,” in
Interactive Distributed Multimedia Systems and
Telecommunication Services, 2000, pp. 199–204.

[9] M. Mauve, J. Vegel, V. Hilt, and W. Effelsberg, “Local-lag
and timewarp: Providing consistency for replicated
continous applications,” in IEEE Transactions on
Multimedia, February 2004, vol. 6, no.1, pp. 47–57.

[10] T. Beigbeder, R. Coughlan, C. Lusher, and J. Plunkett,
“The effects of loss and latency on user performance in
unreal tournament 2003,” in ACM SIGCOMM NetGames,
Portland, Oregon, August 2004.

[11] T. Yasui, Y. Ishibashi, and T. Ikedo, “Influences of network
latency and packet loss on consistency in networked racing
games,” in ACM SIGCOMM NetGames, Hawthorne, New
York, October 2005.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-based congestion control for unicast
applications,” in ACM SIGCOMM, Stockholm, Sweden,
August 2000.

[13] S. Aggarwal, H. Banavar, S. Mukherjee, and
S. Rangarajan, “Fairness in dead-reckoning based
distributed multi-player games,” in ACM SIGCOMM
NetGames, Hawthorne, New York, October 2005.

66


