43

Mediator: A Design Framework for P2P MMOGs

Lu Fan
School of Mathematical and
Computer Sciences
Heriot-Watt University,
Edinburgh, UK
If16@hw.ac.uk

ABSTRACT

With widespread use of the Internet, Massively Multiplayer
Online Games (MMOGS) are becoming increasingly popu-
lar. As MMOGs scale up, conventional Client/Server (C/S)
architectures exhibit various drawbacks in scalability, reli-
ability, and redundancy. This paper presents a new Peer-
to-Peer (P2P) MMOG design framework, Mediator, using
a super-peer network with multiple super-peer (Mediator)
roles. Mediator is novel in integrating four elements: a re-

ward scheme, distributed resource discovery, load-management

and super-peer selection. The reward scheme differenti-
ates a peer’s contribution from their reputation, and pur-
sues symmetrical reciprocity as well as discouraging misde-
meanours. A deadline-driven auction protocol is proposed

for distributed resource discovery. Furthermore, both common-

peer and super-peer workloads are approximately balanced
using a two-level load-management scheme, and super-peers
are selected in a flexible policy-based way. In this frame-
work, the functionalities of a traditional game server are
distributed, capitalising on the potential of P2P networks,
and enabling the MMOG to scale better in both commu-
nication and computation. A proof-of-concept prototype of
this framework is described, and ongoing work is discussed.

1. INTRODUCTION

A MMOG allows thousands of players to interact simul-
taneously in a persistent game world over a network. With
widespread use of the Internet, MMOGs are becoming in-
creasingly popular. A recent survey [15] indicates how the
number of MMOG subscribers have been increasing at a
fast growing rate. Traditionally, MMOGs have been im-
plemented as C/S systems, which offers advantages such as
centralised control, better security and simplicity of imple-
mentation. Though this widely used architecture is suitable
for many types of distributed applications, it still suffers
from technical and commercial drawbacks:

1)Scalability - The performance of central game servers
are a bottleneck that put a limit on the total number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors.

NetGames’07, September 19-20, 2007, Melbourne, Australia.

Hamish Taylor
School of Mathematical and
Computer Sciences
Heriot-Watt University,
Edinburgh, UK
h.taylor@hw.ac.uk

Phil Trinder
School of Mathematical and
Computer Sciences
Heriot-Watt University,
Edinburgh, UK
p.w.trinder@hw.ac.uk

players a game can accommodate.

2)Redundancy - To ensure that the performance of a
game server is powerful enough to handle peak usage rates
may result in high hardware redundancy.

3)Reliability - The C/S architecture is not very fault tol-
erant because servers are single points of failure.

4) Cost - It takes 2 to 3 years and about 10 million dol-
lars to launch a medium-sized MMOG, and ongoing support
costs consume up to 80% of its revenues [8].

As discussed above, C/S architecture drawbacks under-
mine its ability to support large scale, sophisticated, inter-
active multiplayer online games, and thus much research
effort has been put into the design and implementation of
P2P MMOGs [6, 18, 3, 5, 16]. P2P architectures suggest
a scalable and low cost way for building MMOGs. It en-
ables individuals to deploy public domain MMOG software
without the major investment required by previous architec-
tures, and affords business opportunities for enterprises to
market game services in a more flexible and profitable fash-
ion, without providing a supporting hardware infrastructure
and dedicated maintenance staff.

P2P MMOGs have begun to attract significant academic
attention since the early 2000s. Substantial research work
has been carried out to address issues like game event dis-
semination [3, 5, 16], interest management [18, 1], and game
state persistency [6, 2]. Though many important issues have
been clarified and solved to some extent, little work has been
published on the distributed hosting of game objects. As
of June 2006, 97.6% of the deployed MMOGs fell into the
MMO RPG (Role-playing Game) category, and only about
0.3% fell into MMO FPS (First-person Shooter) [15], which
shows the relative importance of MMORPGs. One main
difference between them is that the former involves consid-
erable numbers of game objects (a.k.a. non-player charac-
ters, or NPCs) such as Al-controlled monsters. Tradition-
ally, NPCs are hosted by a central game server, consuming
significant processing power and network bandwidth, and
thus account for a major part of the server’s workload. In
order to support a MMORPG in a P2P network, a scheme
is needed for hosting game objects using common game par-
ticipants’ computing resources.

This paper presents a design framework, which takes into
consideration a reward-based distributed resource discovery
and load-management scheme within super-peer networks,
and aims at distributing the functionalities of a traditional
game server. The rest of this paper is organized as follows.
Section 2 is a brief survey of related work. Section 3 presents
the overall design of the Mediator framework. Section 4

introduces a preliminary proof-of-concept prototype that is
being built. Section 5 concludes and discusses future work.

2. RELATED WORK

2.1 Game Event Dissemination

Game event dissemination has become a popular research
topic, because the bandwidth reduction potential of a P2P
network can remove C/S communication bottlenecks at the
server side. Fiedler et al. were amongst the first to advocate
splitting the game world of a P2P MMOG into smaller pieces
and to apply a publisher/subscriber communication model
to enhance the scalability of a MMOG [3].

With the publication of a number of P2P overlay infras-
tructures in the early 2000s, such as Chord [14], CAN [12],
Pastry [13] and Tapestry [19], game event dissemination re-
search started to head in two opposite directions. Unstruc-
tured approaches [5, 16] emphasised the dynamic group-
ing of peers, and argued that each peer only needs to es-
tablish limited direct P2P connections with neighbouring
peers in the same group. In contrast, structured approaches
[6, 18] proposed building P2P MMOGs over a P2P over-
lay infrastructure which provides advantages such as self-
organization, scalable Distributed Hash Tables (DHT), ef-
ficient routing algorithms, and transparent reconfiguration
after node failures. Generally speaking, a structured design
can be broken down into three layers:

1) Structured P2P Overlay Network - In this layer, ev-
ery peer is identified by a random Id generated by a hashing
function, and a routing algorithm [14, 12, 13, 19] is employed
to route a message from source to destination.

2) Super-peer Network - Within the P2P overlay, some
peers are elected to be super-peers, which operate both as
a server to a set of clients, and as an equal in a network of
super-peers [17].

3)P2P MMOG Game Zones - Every game zone is iden-
tified by a zone Id, which serves as a rendezvous point for
the peers that play in that zone. The main difference be-
tween a peer Id and a zone Id is that the former is random
and temporary, whereas the latter is static and well-known
by all participants of the application.

Most structured approaches accord with this layered struc-
ture, with some flexibilities, e.g. how and for what purpose
a super-peer is elected.

2.2 Interest Management

Interest Management (IM) is a classical research topic in
Networked Virtual Environments (NVE), and was initially
addressed by Morse et al. in the mid 1990s [10]. Various IM
algorithms have been proposed in the literature, and their
performances are compared in [1].

The MOPAR infrastructure [18] is representative of re-
cent work on distributed IM, which is especially beneficial
to the design and implementation of P2P MMOGs. Un-
like previous related work, MOPAR relies on a hybrid com-
munication scheme that combines a DHT and direct P2P
connections. It is argued that though the DHT can facili-
tate the maintenance of the game zone structure, it will in-
troduce a considerable amount of communication overhead.
Instead, MOPAR devises a completely distributed IM al-
gorithm, which requires each peer to establish direct P2P
connections to a small quantity of other peers on demand,
for exchanging time critical information.

44
2.3 Game State Persistency

A MMOG is also called a Persistent World, because of
the maintaining and developing of the game world around
the clock. So, the problem “how is the persistent data
stored, updated, and reloaded?” immediately presents it-
self to game architects who aim to deploy a P2P MMOG
without a centralized game server.

Scott et al. propose that the entire virtual world and the
game logic be combined into an entity database distributed
over all peers, and adopt an agent-based approach for effi-
cient communication and processing among strongly inter-
acting entities [2]. Takuji et al. propose a zoned federation
model, in which a zone owner is elected in each zone and
works in the same way as a centralized authoritative server
while it is connected to the world [6].

3. THE MEDIATOR FRAMEWORK

3.1 Overview

The Mediator framework adopts a hybrid communication
architecture - a structured P2P overlay is used in the peer
bootstrapping process, application level multicast is used for
efficient game zone structure maintenance, and direct P2P
connections are established on demand for the dissemina-
tion of time critical events. Secondly, the framework adopts
quadrant zoning of a single-realm MMOG to faciliate load-
management based upon dynamic zoning, because rectan-
gles are easy to divide and combine. Thirdly, similar to
previous structured related work, peers are organized into
a hierarchical super-peer network. However, a major nov-
elty here is that multiple super-peer roles are used in each
game zone to carry out various management tasks, and some
super-peer roles may have multiple instances. A super-peer
is also called a Mediator, and four preliminary Mediator
roles have been chosen in the current design:

1)Boot Mediator (BM) - A BM is the peer whose peer
Id is numerically closest to a zone Id in the P2P overlay,
and it is responsible for handling bootstrapping messages.
A BM works in a similar way to a Home Node in MOPAR.

2)Resource Mediator (RM) - A RM is a super-peer
that is responsible for the distributed resource discovery and
match-making job, whose working protocol is discussed in
section 3.3. In each game zone, multiple RM instances may
coexist and work in parallel.

3)Interest-Management Mediator (IMM) - As indi-
cated by its name, an IMM is responsible for the interest-
management job. Its working protocol is like but is more
complex than a Master Node in MOPAR (details about the
collaboration between the IMM and the RM are given in
section 3.3).

4)Zone Mediator (ZM) - A ZM is responsible for the
selection of other super-peers and for roughly balancing out
the workload among multiple super-peer instances. More-
over, a ZM also monitors the working state of other super-
peers within the game zone, and replaces failed super-peers
with capable backups in good time. More details about the
ZM working protocol are given in section 3.4.

The contribution of the Mediator framework lies in pro-
viding a way of distributing the functionalities of a tradi-
tional game server in a P2P network, especially the host-
ing of non-player game objects, which is a significant is-
sue but has been addressed by little related work. The
framework is flexible and extensible. On the one hand,

new Mediator roles can be easily introduced into the frame-
work according to newly identified requirements, and on
the other hand, the framework is compatible with various
distributed anti-cheating, interest management, reputation
management, and anti-free-riding algorithms. The Media-
tor framework comprises four sub-topics that are discussed
from section 3.2 to 3.5.

3.2 Reward Scheme

3.2.1 Rationale of the reward scheme

Well-known P2P applications, such as Napster, Gnutella
and Bit torrent show that P2P systems are by nature volun-
tary resource sharing systems, in which there is always a ten-
sion between individual concerns and collective welfare. Due
to this characteristic, Mediator adopts a pull-based schedul-
ing strategy which is more appropriate for maintaining the
viability of a P2P MMOG. In this case, a reward scheme is
crucial to keep a record of the resources that a peer has con-
tributed to the system, and accordingly, to entitle the peer
to consume roughly equivalent resources from other peers.
Thus, selfish peers can be identified and discouraged, and a
sufficient level of resource sharing can be ensured to make
use of the P2P application beneficial.

3.2.2 Design of the reward scheme

Determining how contributors are rewarded raises two
sub-issues: the quantification and the qualification of con-
tributions. Firstly, Mediator quantifies contributions in two
different ways. On the one hand, common peers can con-
tribute their computing resources by pulling and hosting
game objects. Such jobs come with a computational com-
plexity, which can be measured, and a contributor rewarded
in a per-job fashion. However, on the other hand, a Media-
tor’s workload may vary over time, so it is relatively harder
to trace and measure. In this case, it is proposed to reward
Mediators purely according to their hardware configuration
and online time. Therefore, strong peers should be moti-
vated to take Mediator jobs, as well as to stay online for a
longer time.

Secondly, because a contribution scheme is only an ac-
counting mechanism that facilitates symmetrical reciprocity,
it is inadequate in discouraging disadvantageous behaviour,
e.g. a player pretends to have a stronger machine in order
to earn more contribution points, but the machine is over-
loaded by excessive tasks and consequently degrades other
players’ gaming experiences; or, a Mediator disconnects
from the system abruptly, putting the system into an in-
consistent state which takes much time and inconvenience
to recover from. In this case, a reputation scheme becomes
necessary for qualifying a peer’s resources and creditability.
By tracking a peer’s historical behaviour, its overall manner
towards P2P collaborations can be made accountable for its
positive or negative contribution to the system.

Thus, Mediator rewards contributors by both increasing
their reputation score and their contribution points. The
former is helpful to promote future “sales” of their resources,
and the latter entitles them to consume equivalent resources
from other peers. It is important to notice that the repu-
tation and contribution scores can be used in various bene-
ficial ways rather than only within the reward scheme, e.g.
the resource discovery scheme described in the next section
attempts to enhance the gaming experience, such as min-

45

Resource Ad Job Ad
[Type= String: "Job"

[Type= String: "Resource”
Owner = int: peerid PRI = int: [0,100]
Rep = int: [-100,100]
CPU = double: free processing power
RAM = double: free memory (KB)
BW = double: free bandwidth (Kbps)
Mini = int: minimum reward accepted

Owner = int: peer id

TTL = int: TTL of the object (minute)
Deadline= String: auction deadline
TimeStamp = String: issue time
Mini = int: minimum Rep required
ObjectType= String: object type
LV= String: serialized latency vector Amount = int: number of the object

CPU = double: processing power

RAM = double: memory (KB)

BW = double: bandwidth (Kbps)

Reverd = int: round((BW/ BWFactor +
RAM/RAMFactor +CPU/CPUFactor) *

TTL* Amount)

Rank = int: round(Other.PRI + Other.Rep -
Other.Latency/ LatencyFactor)
Requirements = boolean: Other.Rep >= Mini]

Fav = String: serialized friends' ids
Rank = int: Other.Reward
Requirements = hoolean:
(Other.Owner != Owner) &&
(Other.CPU*Other. Amount <= CPU)
&& (Other.BW*Other. Amount <= BW)
&& (Other.RAM*Other. Amount <=
RAM) && (Other.Reward >= Mini)
Latency= int: latencyvalue
Preference=int: Other.Rank |

Figure 1: Structures of Resource Ad and Job Ad

imizing latency, of favourable peers with good reputation
and high contribution scores.

Currently, the Mediator framework recommends the Eigen-
Trust reputation management algorithm [7] and the DCRC
anti-free-riding algorithm [4] as possible implementations for
the reward scheme. Though originally the two algorithms
were designed for P2P file-sharing applications, they can be
easily adapted and used in a P2P MMOG.

3.3 Distributed Resource Discovery

3.3.1 Condor-like opportunistic match-making

Mediator adopts a Condor-like match-making approach
for resource discovery, and represents both the available re-
sources and the job requests using ClassAds [11]. Though,
Condor and Mediator share being pull-based and oppor-
tunistic [11], a major difference is that the former is static
and centralized, whereas the latter is dynamic, decentral-
ized and features multiple match-makers working in paral-
lel. Figure 1 shows the structure of a Mediator Resource Ad
and Job Ad.

1) Descriptions of the Resource Ad - The Owner field
contains a resource provider’s Id as a 128bit code. The PRI
and Rep fields respectively indicate the resource provider’s
current contribution points and reputation score. The CPU,
RAM, and BW fields reflect a peer’s available processing
power®, memory (KB) and network bandwidth (Kbps). A
resource provider is able to specify a minimum job weight
that it accepts in the Mini field, because on the one hand
a powerful provider may not want to be bothered by tiny
jobs, and on the other hand, less competent providers would
be starved of contribution opportunities if all jobs in their
power were seized by stronger peers. The LV field is a serial-
ized HashMap with peer Ids as keywords, and latency values
as contents (more details are discussed in section 3.3.2). The
Rank and Requirements fields are required by the Clas-
sAds match-making mechanism. By the evaluation of those
two fields, it is determined whether a given resource provider
is able to host a specific job or not, and to what extent both

! A benchmark-based way of evaluating the performance of a
CPU product is suggested for simplicity and compatibility.

parties are a good match for each other. The last two fields,
Latency and Preference are completed by the RM that
carried out the match-making. A RM finishes the Resource
Ad from the selected resource provider, and passes it to the
IMM as a bid for the corresponding job (more details are
discussed in section 3.3.2).

2)Descriptions of the Job Ad - The Owner field re-
flects a peer Id, for whom RMs should minimize latency
while selecting resource providers. The owner of a specific
job is determined by the IMM that issued the Job Ad, ac-
cording to a game event prediction algorithm which is tightly
related to in-game logics and beyond the scope of this paper.
The TTL, Amount, and ObjectType fields respectively
represent the life time, the cardinality, and the type of a
game object. These three fields will be used for a selected
resource provider to initialize the game objects. The IMM
can specify a Mini field in a Job Ad to restrict the mini-
mum reputation score for a required resource provider, ac-
cording to the significance of the game object to be hosted.
The Deadline and TimeStamp fields are utilized by the
deadline-driven auction protocol. Finally, CPU, RAM and
BW fields describe the weight of a job.

3.3.2 Deadline-driven Auction (DA) Protocol

Figure 2 represents the overall flow of control of the frame-
work, where sub-regions are labelled by circled numbers to
establish a connection between the diagram and correspond-
ing texts that explain it. As discussed in section 3.1, a BM
and an IMM work in a similar way to a Home Node and a
Master Node in MOPAR. At the bootstrapping stage, a peer
routes an enquiry message to the target Zone Id through the
structured P2P overlay, which will be received and handled
by the BM for that zone (0). If a ZM already existed in the
zone, the BM would reply to the enquiry with the current
ZM’s Id. Otherwise, the BM would promote the peer to
be a provisional ZM (@), with a more capable ZM selected
later on. Once a peer has successfully joined a game zone,
it updates the IMM when its moving speed or direction are
changed. In this way, the IMM obtains a global view of the
zone-level game world, and is able to predict every peer’s
position in the near future. Peers, whose Area of Interest
(AOI) are going to overlap, will be notified by the IMM to
establish direct P2P connections with each other, getting
prepared for potential real-time interactions.

In MOPAR, a Master Node is only required to predict
player-vs.-player interactions. However, Mediator also re-
quires an IMM to predict player-vs.-object events), e.g. a
player avatar is approaching a hidden spawn point of mon-
sters and will trigger a game event that releases three drag-
ons in the next five seconds. In abstract, given a frame
interval T, the IMM will predict the game events that sat-
isfy Ey € [Tr,2TF|, where E; is the estimated period of time
before event E actually takes place, as well as a deadline be-
fore which the IMM must locate a capable resource provider
to host the game objects involved in event E, through co-
operation with multiple RMs ®). The process for locating a
resource provider is directed by the DA protocol:

I. After the bootstrapping stage, a peer enrols at the ZM
to become a zone member. The ZM responds with an empty
Latency Vector (LV) and the communication endpoint of a
selected RM 2. The empty LV contains a list of all existing
zone members, but with all latency values set to infinity.
The peer then starts to ping every other zone member to

46

complete the LV. More up-to-date empty LVs will be is-
sued by the ZM via a zone-level multicast for zone structure
maintenance purposes.

II. Once the peer has finished pinging a majority of the
zone members, it may create a Resource Ad according to
local load-management policy and upload it to the RM as-
signed by the ZM. Because what computing resources are
available is transient information, the peer should update
the RM when its resource availability is changed .

ITI. At the RM end, large numbers of Resource Ads may
be received from peers that are currently attached to it.
These Resource Ads are queued and wait to be accepted.
Every time a RM receives a Resource Ad, it inspects the
queue. If an existing Resource Ad from the same peer is
identified, the previous Ad would be replaced by the new
one. The RM also monitors the TTL of each entry in the
queue, and removes stale Resource Ads @).

IV. At the IMM end, game events are predicted, and
Job Ads are created and delivered to multiple RM instances
within the game zone. When an RM receives a Job Ad, it
estimates how much time is left for match-making by sub-
tracting the round-trip-time (RTT) from the deadline indi-
cated by the Job Ad, and then finds out a most suitable
resource provider from the local resource queue in a best
efforts manner (5. Because there will be real-time interac-
tion between the selected resource provider and the resource
consumer, the word “suitable” here mainly refers to a min-
imum latency, accompanied by other considerations such as
a resource provider’s reputation and contribution. When it
reaches the deadline for the match-making or the RM has
finished examining all existing Resource Ads in the queue,
a resource provider with the highest Preference value is
selected as the most suitable one.

V. Next, the RM completes the selected Resource Ad and
uploads it to the IMM as a bid for the job. Because the
IMM only aims at employing the best resource provider, it
becomes an auction among the multiple RMs, and any less
preferred bid is rejected immediately by the IMM ©). In
other words, the worst case for a RM is to wait for . — m;T
time before confirming that its bid has won the auction.

VI. Finally, the winning RM passes the Job Ad to the
selected resource provider, and the latter will initialize the
game objects accordingly (D). If the game objects are state-
less Al-controlled monsters, the resource provider can load
the AT programs from a local copy of the game logic. Other-
wise, if the game objects are stateful, the resource provider
may acquire related information through a P2P MMOG per-
sistency scheme such as was discussed in section 2.3.

3.4 Load-management

3.4.1 Peer-level Load-management

Because Mediator adopts a pull-based scheduling strategy,
every individual peer monitors its own computing resources
and decides at what time to ask for new jobs, and how many
jobs to ask for. The set of configuration parameters related
to peer level scheduling is called the Contribution Enthusi-
asm, which controls the following aspects of a peer’s local
scheduling behavior:

1)The amount of dedicated resources - A player is
able to specify what percentage of its computing resources
it would like to contribute to a P2P MMOG. To encourage
voluntary contribution, the framework allows a player to

47

| Resource Mediator | Interest-Management

Mediator

Resource Ads

Bootstrapping
Process

BM | promoted | @
Registr
cgisty [Promoted} [Self- Mediator]

© | toazM Qualification Backups

‘ supplies

Boot | Common Peer | Zone Mediator
Mediator
joins the game | Prepares
boot enquiry RRA&LV

Zone Structure
Analysis

more RMs
needed?

Workioad

no
Management
|
RM Promotion ®

Accepted & Queued

supplies

Match-making
Process

% reaches the
deadline or

finishes early

Predicts Game Events
& Creates Job Ads

Job Ads
Received

|

Auction
Process

Bids
Received

completes the Resource
Ad & uploads as a bid

reaches the
deadline

| registration reply ®

Completes
the empty LV
Creates

| attaches to an existing RM &

-

@]

| aresource provider
is finally selected

Resource Ad
Removed

Resource Ads

refreshes Resource Ads periodically or on demand

Notifies with
the Job Ad

@ leaves the | Retires fromall |
game | Mediator Roles |

Figure 2: Activity diagram for a typical gaming session

join the application as a dedicated contributor, when the
player is not playing the game but the player’s computing
resources are being utilized.

2) Pulling frequency and job selection - A peer can
determine how often it uploads Resource Ads to a RM, and
specify which job types it prefers, accepts, and refuses. The
framework encourages stronger peers to seek a large bundle
of jobs or to work as a super-peer, and leave the lesser jobs
to weaker or slower to access peers.

3) Super-peer role solicitation - A peer can specify whether

it is interested in super-peer jobs. If it is interested, the
peer can evaluate its hardware configuration against the
Reference Resource Ad (RRA) that is periodically issued
by the ZM, to find out whether it is presently qualified for
a super-peer role. According to the self-qualification result,
the peer decides whether to register at the ZM as a super-
peer backup. Generally speaking, a super-peer job would be
better rewarded than a common resource contributor. How-
ever, a super-peer is required to commit to providing the
service for a long enough gaming session, and if the peer
violates this commitment, its reputation will be diminished.

3.4.2 Zone-level Load-management

The zone-level load-management mechanism is designed
to balance super-peer workloads approximately. Because a
ZM is responsible for promoting various super-peers in the
framework, zone-level load-management is mainly embodied
by the ZM decision-making algorithms to promote adequate
super-peers in a game zone, and prevent any super-peer from
becoming overloaded.

On the one hand, a ZM should maintain the super-peer
to common peer ratio in a game zone to approximately a
constant. Every time a new peer joins its zone, the ZM
evaluates whether more super-peers are needed. If the an-
swer is positive, the ZM would promote a given number of
super-peers from a super-peer backup queue @. Moreover,
it is also necessary for a ZM to monitor the length of the
backup queue, in order to protect a game zone from super-
peer paucity. The ZM will also regulate the length of the

backup queue by tuning the super-peer qualification criteria
specified in each RRA that it issues.

On the other hand, each working super-peer should pe-
riodically report its workload to the ZM, and the ZM will
either shift part of a heavy-loaded super-peer’s work to other
super-peers, or just assign the lightly-loaded super-peers to
new participants from then on ®. Workload information
can be delivered to a ZM when a super-peer periodically re-
freshes the ZM with knowledge of its existence. If a super-
peer fails to report for a sufficient period of time, the ZM will
assume that the super-peer has left the game zone silently,
and replace the super-peer with a capable backup.

3.5 Super-peer Selection

Super-peer selection is a common problem that emerges
across a variety of P2P applications with many different
selection protocols presented in the literature [17, 9]. In
the Mediator framework, except for the BM that is a light-
weight super-peer selected in a structured way, other Medi-
ator roles are selected using a policy-based approach. Cur-
rently, the framework just suggests some fundamental poli-
cies and more application specific ones can be flexibly intro-
duced by different P2P MMOG designs.

Policy 1 Only qualified, high performance peers can be
selected as Mediators, unless the zone is bootstrapping when
any peer can be selected as a provisional Zone Mediator, or
during a resource paucity period when super-peer qualifica-
tion criteria are temporally lowered.

Policy 2 A ZM should avoid assigning multiple Mediator
roles to a single peer, if other qualified candidates are avail-
able, unless the peer works as the BM for multiple game
zones, or happens to be both a Mediator for its native zone,
and a BM for a foreign zone.

Policy 3 A relatively stable ratio between common peers
and super-peers should be maintained, in order to prevent,
on the one hand, any super-peer from being overloaded, and
on the other hand, too many super-peers being promoted
and sitting idle.

4. IMPLEMENTATION

A proof-of-concept prototype for the Mediator framework
is being built using FreePastry 2.0 and the ClassAds Java
library 2.2. The prototype employs the Direct Simulator
integrated in the FreePastry package, and has successfully
simulated 1000 peers on an AMD 64 3000+ workstation with
2GB memory. The simulator takes in a table of float latency
values that is generated by a standard network topology gen-
erator such as GT-ITM. According to the topology file, both
the direct latency between two peers and the accumulated
latency for routing a message through the P2P overlay are
simulated. In the prototype, each peer is assigned a cer-
tain amount of virtual computing resources, and the local
scheduling behaviours are simulated by a resource monitor
stub. Preliminary experiment results indicate that various
Mediator roles are allocated as peers join the application,
zone structures are maintained correctly when peers mov-
ing from one zone to another, and the virtual computing
resources owned by each peer are dynamically consumed by
satisfying job requests.

5. CONCLUSION AND FUTURE WORK

This paper presents Mediator, a novel P2P MMOG de-
sign framework that addresses four sub-issues - the reward
scheme, distributed resource discovery, load-management,
and super-peer selection. These issues are crucial to dis-
tribute the functionalities of a traditional game server , but
have not been much addressed in the literature. In Mediator,
game objects are hosted using player machines’ computing
resources, and hence the MMOG scales better in both com-
munication and computation. One avenue of future work is
to complete experiments to validate and measure:

1) Effectiveness - Given a deadline (Tr) that is suffi-
ciently long, a resource provider with an optimal Prefer-
ence value should be located.

2) Efficiency - There should be a direct proportionality
between Tr and the Preference value, so that an efficient
Tr can be predicted to afford an acceptable Preference.

3)Scalability - All experiments will be repeated several
times against different peer populations, to test whether the
framework is scalable or not.

4) Robustness - Exceptional events, e.g. Mediators stop-
ping functioning, will be simulated to test whether the frame-
work is robust enough to recover from potential failures.

The current prototype does not support load-management
for Zone and Interest Management Mediators and future
work will investigate algorithms for dynamic zoning, so that
overcrowded game zones can be divided into disjoint or even
parallel sub-zones, each with its own ZM and IMM. Simi-
larly, sparsely populated game zones can be combined into
a single zone that is controlled by a joint ZM and IMM.

6. REFERENCES

[1] J. Boulanger, J. Kienzle, and C. Verbrugge.
Comparing Interest Management Algorithms for
Massively Multiplayer Games. In Proceedings of the
5th NetGames workshop. ACM, 2006.

[2] S. Douglas, E. Tanin, and A. Harwood. Enabling
Massively Multi-Player Online Gaming Applications
on a P2P Architecture. In Proceedings of the IEEE
International Conference on Information and
Automation, pages 7-12. IEEE, 2005.

48

[3] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer
games. In Proceedings of the 1st NetGames workshop,
pages 14-22. ACM, 2002.

[4] M. Gupta, P. Judge, and M. Ammar. A reputation
system for peer-to-peer networks. In Proceedings of the
18th NOSSDAV workshop, pages 144-152. ACM, 2003.

[5] S.-Y. Hu and G.-M. Liao. Scalable peer-to-peer
networked virtual environment. In Proceedings of the
8rd NetGames workshop, pages 129-133. ACM, 2004.

[6] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a p2p approach to scalable
multi-player online games. In Proceedings of the 3rd
NetGames workshop, pages 116-120. ACM, 2004.

[7] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The EigenTrust Algorithm for Reputation
Management in P2P Networks. In Proceedings of the
12th WWW Conference, pages 640-651. ACM, 2003.

[8] J. Kesselman. Server Architectures for Massively
Multiplayer Online Games. In Session TS-1084,
Javaone conference. SUN, 2005.

[9] V. Lo, D. Zhou, Y. Liu, C. G. Dickey, and J. Li.
Scalable supernode selection in peer-to-peer overlay
networks. In Proceeding of the 2nd HOT-P2P
Workshop, pages 18-25. IEEE, 2005.

[10] K. L. Morse. Interest management in large-scale
distributed simulations. Technical report, University
of California, Irvine, CA, 1996.

[11] R. Raman, M. Livny, and M. Solomon. Resource
Management through Multilateral Matchmaking. In
Proceedings of the 9th IEEE Symposium on HPDC,
pages 290-291. IEEE, August 2000.

[12] S. Ratnasamy, P. Francis, M. Handly, R. Karp, and
S. Schenker. A scalable content-addressable network.
In Proceedings of SIGCOMM’01, pages 161-172.
ACM, 2001.

[13] A. Rowstron and P. Druschel. Pastry: scalable,
decentralized object location and routing for large
scale peer-to-peer systems. In Proceedings of 18th
IFIP/ACM Middleware, pages 329-350. ACM, 2001.

[14] I. Stoica, R. Morris, D. Karger, and F. Kaashoek.
Chord: A scalable peer-to-peer lookup service for
Internet applications. In Proceedings of the 1st
NetGames workshop, pages 149-160. ACM, 2001.

[15] B. S. Woodcock. An analysis of MMOG subscription
growth. Technical report, www.mmogchart.com, 2006.

[16] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito.
A Distributed Event Delivery Method with Load
Balancing for MMORPG. In Proceedings of the 4th
NetGames workshop, pages 1-8. ACM, 2005.

[17] B. B. Yang and H. Garcia-Molina. Designing a
super-peer network. In Proceedings of I[CDE’03, pages
49-60. IEEE, 2003.

[18] A. P. Yu and S. T.Vuong. MOPAR: a mobile
peer-to-peer overlay architecture for interest
management of massively multiplayer online games. In
Proceedings of the 15th NOSSDAV workshop, pages
99-104. ACM, 2005.

[19] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical report, UC Berkeley, 2001.

