
Preprint c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Characterising LEDBAT Performance Through

Bottlenecks Using PIE, FQ-CoDel and FQ-PIE

Active Queue Management

Rasool Al-Saadi∗†, Grenville Armitage∗ and Jason But∗

∗School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia
†Al-Nahrain University, Baghdad, Iraq

{ralsaadi, garmitage, jbut}@swin.edu.au

Abstract—Low Extra Delay Background Transport (LEDBAT)
is defined in RFC6817 as a congestion control algorithm for lower
than best effort transport service that reacts to both delay and
loss congestion signals. LEDBAT allows bulk transfer applications
(such peer-to-peer file transfer and software updates) to utilize
available capacity in the background while limiting additional
forward queuing delays at network bottlenecks to 100ms. New
Active Queue Management (AQM) schemes similarly aim for low
latencies by dropping or marking packets when the bottleneck
queuing delay exceeds thresholds much lower than 100ms. Due to
renewed interest in deploying modern AQMs on home broadband
services, we experimentally evaluate and characterize the impact
of placing PIE, FQ-CoDel and FQ-PIE variants of AQM in the
path of flows generated by libutp (a widely deployed UDP-based
LEDBAT implementation). We uncover, and propose solutions to,
some differences between libutp and RFC6817 that lead to poor
utilization and incorrect inter-flow capacity sharing over AQM
bottlenecks.

Index Terms—LEDBAT, AQM, libutp, CoDel, PIE

I. INTRODUCTION

Many latency-tolerant applications utilise the Transmission

Control Protocol (TCP) for reliable, byte-stream data transport

that dynamically adapts to, and makes use of, changing

network capacity. However, standard TCP’s capacity probing

strategy induces potentially-significant queuing delays on all

traffic sharing the first-in first-out (FIFO) drop-trail buffers

of a conventional router or switch. This creates problems

for applications that require low latency for optimal end-user

experience (such as multimedia conferencing and multi-player

games). The problem worsens when bottlenecks suffer from

Bufferbloat [1] (buffering in excess of traffic requirements).

Sometimes referred to as scavenger class transport, Low

Priority Congestion Control (LPCC) transport protocols have

been developed as an alternative to TCP for latency-tolerant

applications (such as peer-to-peer file sharing applications)

that are willing to take a lower bandwidth share than compet-

ing TCP-based traffic on latency-sensitive applications. Some

LPCC go further, and aim to cap the bottleneck queuing delays

they induce when only sharing with latency-senstive traffic [2].

Low Extra Delay Background Transport (LEDBAT, de-

scribed in RFC6817 [3]) is a widely deployed, delay-based

LPCC that aims to keep forward queuing delay no more than

100ms to minimise interference with other flows. Many pop-

ular BitTorrent peer-to-peer file sharing clients use libutp

[4]1 to provide a UDP-based transport protocol with LEDBAT

congestion control [5], [6]; Apple Inc. implemented TCP-

based LEDBAT for operating system updates [7]; and Mi-

crosoft have LEDBAT in beta-trials for Windows 10 [8].

A complication for LEDBAT is the emergence of Pro-

portional Integral controller Enhanced (PIE) [9], Controlled

Delay (CoDel) [10], FlowQueue-CoDel (FQ-CoDel) [11] and

FlowQueue PIE (FQ-PIE) [12] Active Queue Management

(AQM) schemes. They target loss-based TCP flows by drop-

ping packets when bottleneck queuing delay reaches specified

levels well under 100ms, causing TCP to back-off earlier than

would occur with FIFO queues. The potential for significant

reduction in overall round trip time (RTT) is motivating

deployment of these new AQMs at either end of shared, home

broadband last-mile services.

However modern AQM actively minimises the delay signal

that LEDBAT uses to infer congestion, pushing LEDBAT out

of its desirable delay-based congestion control behaviour into

more conventional loss-based behaviour.

In this paper we demonstrate and solve the negative impact

of ambiguities in RFC6817’s definition of LEDBAT, and cer-

tain interpretations of RFC6817 by libutp, when LEDBAT

flows must react primarily to packet losses in low-delay en-

vironments. We propose and evaluate a specific enhancement

to libutp’s use of selective acknowledgements (SACK) to

expedite recovery from lost retransmissions. This highlights

the importance of transport protocols being specified and

implemented carefully for a wide range of network conditions.

The rest of this paper is structured as follow. Section

II introduces LEDBAT; summarises the modern AQM algo-

rithms; outlines prior work on LEDBAT with older AQMs

and detecting lost retransmissions. Section III introduces our

experimental test environment while Section IV introduces

flow unfairness and stalling issues we have discovered, along

with our proposed solutions. Implications are discussed in

Section V and we conclude in Section VI.

II. BACKGROUND

Here we cover LEDBAT’s key characteristics compared

to regular TCP, summarise modern AQM schemes that are

1A library implementing LEDBAT for the uTorrent Transport Protocol
(uTP).
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likely to appear in consumer last-mile services, note prior

evaluation of LEDBAT’s interaction with older AQM schemes,

and summarise prior work on prompt detection of loss of

retransmitted packets.

A. Low Extra Delay Background Transport (LEDBAT)

LEDBAT infers network congestion when forward queuing

delays increase, and early response to rising delay ensures

LEDBAT flows typically achieve a lower share of bandwidth

than competing TCP flows. LEDBAT has a default target of

adding no more than 100ms to a path’s forward one-way

delay (OWD). LEDBAT uses timestamps in each packet to

estimate instantaneous forward path one-way delay (OWDi),

so reverse path delay fluctuations do not affect forward path

congestion estimation.

As with standard TCP, LEDBAT’s congestion window

(cwnd) caps the number of unacknowledged bytes in flight.

In the absence of packet loss, cwnd is increased or decreased

according to Equation 1, where ∆ (Equation 2) is a normalised

difference between one-way queuing delay and target:

cwndi+1 = cwndi +
G×MSS ×∆×Backed

cwndi
(1)

∆ =
(target+OWDbase −OWDi)

target
(2)

MSS is maximum segment size, G is the gain scale which

determines cwnd growth/decline speed (G<1 to make the

algorithm less aggressive than standard TCP), and Backed

the number of newly acknowledged bytes. OWDbase is the

minimum OWDmin over the last 10 minutes (RFC6817)

or 13 minutes (libutp), where OWDmin is the lowest

OWDi over each one minute period. This smooths the rate

of changes in OWDbase that could otherwise be caused

by delayed ACK, clock skew or re-routing problems. The

difference OWDq = (OWDi−OWDbase) estimates the one-

way queuing delay between sender and receiver.

In response to this delay signal, LEDBAT increments cwnd

by a maximum of G ×MSS every RTT when OWDq = 0,

uses smaller and smaller increments as OWDq approaches the

target, and decrements cwnd when OWDq > target. In the

absence of competing loss-based traffic, LEDBAT flows will

stabilise cwnd around the point where OWDq = target.

Equation 1 allows LEDBAT to rapidly increase cwnd when

no congestion is detected while producing low impact on the

network when congestion starts to build. This eliminates a

dependence on packet losses (and the resulting multiplicative

backoffs) while probing for capacity.

When a LEDBAT flow competes with a loss-based (delay-

insensitive) flow (such as TCP NewReno) over a conventional

FIFO bottleneck, the LEDBAT flow will observe high OWDq

caused by the delay-insensitive flow. LEDBAT will reduce

its own cwnd once OWDq exceeds threshold, effectively

deferring to the regular TCP flow as intended.

In response to packet loss, RFC6817 specifies that LEDBAT

halves cwnd no more than once per RTT.

B. CoDel, PIE, FQ-CoDel and FQ-PIE

CoDel and PIE are single-queue AQM schemes that aim

to control queue delay efficiently while passing short traffic

bursts and preserving high long-term link utilisation without

the need for parameter tuning.

CoDel distinguishes between bad (persistent) and good

(temporary) queues based on the local minimum time spent in

the queue (packet sojourn time, Tsojourn). CoDel enters a drop

state, in which packets are dropped or marked from the queue’s

head, when Tsojourn remains above Ttarget (default 5ms) for

a nominated time Tinterval (default 100ms). The next drop

time is reduced exponentially and another packet is dropped

if Tsojourn continues to remain above Ttarget; otherwise it

exits the drop state. A small Ttarget keeps queuing delay low,

while a Tinterval larger than maximum RTT of flows allows

the bottleneck to drain short bursts of packets from its queue.

PIE drops/marks packets on ingress based on a regularly-

updated drop probability. Periodically (every 15ms by default),

the drop probability is calculated based on the weighted

deviation of queue delay from Ttarget (default 15ms), and

weighted queue delay trend. PIE calculates the queueing delay

by dividing the current queue length by the estimated departure

rate. To allow short-lived bursts of packets, PIE ignores the

drop probability on packet arrival for a short time (default

150ms) after an idle period.

PIE provides further mechanisms to improve overall per-

formance including 1) turning AQM on and off automatically

based on congestion level; 2) ECN threshold (10% default) to

protect the queue from unresponsive ECN enabled flows; and

3) drop de-randomisation to prevent too close or too far packet

drop. Drop de-randomisation accumulates the drop probability

during packet en-queuing and only drops packets when the

accumulated probability exceeds a threshold.

FQ-CoDel (FlowQueue CoDel) [11] is a hybrid scheduler-

AQM scheme that controls queueing delay and provides

relatively fair sharing of the bottleneck capacity. The

“FlowQueue” scheduling part of FQ-CoDel protects flows

from each other by classifying and hashing the flows into one

of 1024 queues (default) and serving them using the Deficit

Round Robin (DRR) algorithm. The FlowQueue scheduler

provides a short period of priority to lightweight flows (such

as DNS queries) to increase overall network response by

maintaining lists of new and old queues, where queues in

the new queues list have higher priority than those in the old

queues list. Latency is controlled in each queue separately

using independent instances of CoDel AQM.

FQ-PIE (FlowQueue PIE) is a recent hybrid scheduler-AQM

scheme implemented in the FreeBSD operating system [12].

Like FQ-CoDel, this AQM hashes flows to one of N queues,

each independently managed by an instance of PIE, and also

uses FQ-CoDel’s FlowQueue strategy to provide priority to

new, short-lived flows. FQ-PIE provides low queueing delay

and relatively fair capacity sharing between competing flows.

When a single flow passes through an FQ-CoDel or FQ-

PIE bottleneck, the scheduler assigns only one queue and their
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behaviour is the same as a single flow passing through a CoDel

and PIE bottleneck respectively.

C. LEDBAT Over an AQM Managed Queue

Rossi et. al [5] used ns2 simulation to confirm that LEDBAT

flows through a FIFO bottleneck with a large, drop-tail queue

get a (desirable) lower bandwidth share than TCP flows,

and when LEDBAT responds to loss over this same FIFO

bottleneck it shares bandwidth equally with TCP flows.

However, any AQM that keeps queuing delays under LED-

BAT’s default target of 100ms will deny LEDBAT flows a suf-

ficient OWD signal with which Equation 1 can control cwnd.

For example, CoDel’s dropping of packets that exceed 5ms of

queuing delay (after CoDel’s burst tolerance period) means a

LEDBAT flow’s cwnd will be controlled by packet loss signals

well before Equation 1 itself causes any cwnd reduction. Under

such circumstances RFC6817 aims for LEDBAT to behave no

more aggressively than a standard loss-based TCP.

RFC6817 also notes that flow-isolating packet schedulers,

such as Weighted Fair Queueing (WFQ), provide further pro-

tection for latency sensitive flows. Although these outcomes

are in line with LEDBAT goals, RFC6817 notes that further

study is required to fully understand the impact of AQM on

LEDBAT convergence properties.

Gong et. al [13] explore the coexistence of five AQM

techniques with different LPCC including LEDBAT, through

the use of ns2 simulation and experiments. They found that

AQM re-prioritises LEDBAT flows, resulting in almost equal

bandwidth sharing between TCP and LEDBAT flows. While

[13] extensively analyses the effect of AQM on LPCC algo-

rithms, it does not experimentally explore the impact of the

path RTT on LEDBAT flows nor consider modern AQMs.

D. Prompt detection of loss of retransmitted packets

In Section IV we show LEDBAT flows over AQM bottle-

necks can stall frequently due to losses of previously retrans-

mitted packets. Such losses are, for example, a known issue

in TCP over high error rate wireless environments [14], [15],

and we summarise some prior solutions here.

Duplicate Acknowledgement Counting (DAC) [16] uses

cwnd at the moment of fast retransmission to estimate the

number of packets in-flight at the time, and hence the max-

imum number of duplicate ACKs (dupACKs) we should

receive for a lost packet. DAC immediately resends the previ-

ously retransmitted packet if more than the expected number

of dupACKs are received.

Detecting and Differentiating the Loss of Retransmitted

Packets (DDLRP) [17] improves on DAC by estimating the

packets in flight at the moment of packet loss detection using

the difference between the highest sequence number sent and

the dupACKs of the lost packet. As with DAC, DDLRP

resends the previously retransmitted packet if more than the

expected number of dupACKs are received.

Sreekumari et al. [15] propose a modification of RFC 1323’s

TCP timestamp option processing [18] such that the receiver

updates the echo reply field even during loss recovery. The

sender logs the timestamp of the retransmitted packet at the

start of fast recovery. This retransmitted packet is considered

lost, and resent again, upon receipt of a dupACK whose echoed

timestamp is greater than or equal to the stored timestamp.

Retransmission Packet Loss Detection (RPLD) [14] uses

TCP’s Selective Acknowledgement option (SACK) [19] to infer

retransmissions losses. SACK enables a sender to learn the

specific sequence numbers received by the destination after a

lost packet. During fast retransmission, RPLD stores the first

sequence number and transmission time for the retransmitted

and subsequent packets, marking them as either retransmit-

ted or new. When further dupACKs are received containing

SACK information, the list of stored sequence numbers and

transmission times is traversed to determine if any successfully

received packets (indicated in the SACK) were sent after

any retransmitted packets were sent. If this is the case, the

retransmitted packet is considered lost, and resent again.

Key concepts in RPLD also turn up in RACK (“Recent

ACKnowledgment”) [20]. RACK aims to efficiently utilise

SACK information and time-stamps in TCP packets to ex-

pedite detection and recovery from all packet losses.

To varying degrees these proposed solutions need modifica-

tion to TCP options, are unable to detect multiple losses or add

more complexity to the transport protocol’s implementation.

III. TEST ENVIRONMENT

We used a TEACUP-based [21] testbed to explore the

impact of using PIE, FQ-CoDel and FQ-PIE on commit

3110314 (2016) of libutp. Figure 1 shows our testbed’s

network topology, with two hosts (Intel Core 2 Duo @

3GHz, Linux 4.9), one bottleneck router (Intel Core 2 Duo

@ 2.33GHz, Linux 3.17.4 or FreeBSD 11-stable), a control

host and gigabit Ethernet links. Experiment traffic flows from

Host 2 → Bottleneck → Host1.

Fig. 1. Testbed topology: Traffic flows from Host 2 → Bottleneck → Host1

To emulate our path’s unloaded RTT (RTTbase) and con-

figurable bottleneck bandwidth (Brate), the bottleneck router

uses netem and tc modules in Linux (section IV-B of [21])

when using PIE or FQ-CoDel, and Dummynet and IPFW in

FreeBSD ([22]) when using FQ-PIE for specific experiments.

We use the default 1000-packet bottleneck buffer for each

AQM. We do not test LEDBAT over CoDel as CoDel’s authors

themselves recommend using CoDel in the context of FQ-

CoDel instead of as a standalone AQM.

FreeBSD’s PIE and FQ-PIE are based on the latest PIE spec-

ification in RFC8033 [9] while the Linux PIE implementation
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is based on an earlier PIE Internet-Draft [23]. Nevertheless, our

PIE experiments use a Linux bottleneck, as Linux is commonly

deployed in embedded systems such as home gateways. This

makes our observations more likely to match the experience

of end users. (The main difference is that RFC8033 is more

aggressive in dropping packets, due to specifying a shorter

15ms for both Ttarget and drop probability update interval.

Single flow scenarios using FreeBSD PIE or FQ-PIE would

likely show slightly different results than with Linux PIE.)

We patched libutp to gather detailed internal state (such

as current congestion window size and smoothed RTT).

IV. UNBALANCED BANDWIDTH CONSUMPTION AND

STALLING FLOWS

Two problems emerged when libutp-generated flows

pass through an AQM bottleneck. libutp-generated flows

can exhibit inter-flow bandwidth unfairness by incorrectly

consuming more bandwidth than competing standard TCP

flows, and regularly stall when passing through a AQM-

managed bottleneck under low-to-modest RTT and bandwidth

conditions that easily occur in home user contexts.

A. Improving libutp for low RTT paths

Our analysis uncovered the following issues with libutp’s

interpretation of RFC6817:

1) Does not backoff cwnd more frequently than once every

100ms regardless of RTT.

2) Equation 1’s G × MSS term was effectively set to

3000 bytes, allowing cwnd growth by roughly two MSS

rather than one MSS per RTT (faster than it would with

standard TCP).

3) Enforces a minimum RTO (Retransmission Time-Out)

of one second, and relies on this RTO to recover from

loss of retransmissions.

We implemented libutp-mod [24] to demonstrate the im-

pact of fixing these issues by modifying libutp as follows:

1) Use libutp’s existing smoothed RTT estimate

(RTTsmoothed) to allow cwnd to backoff once per RTT

(per RFC6817) on packet loss.

2) Modify Equation 1’s G × MSS term to ensure cwnd

grows by only one MSS per RTT.

3) Allow lost retransmissions to themselves be retransmit-

ted long before an RTO is triggered.

Items #1 and #2 are implementation choices that diverge from

clear directives in RFC6817. Item #3 relates to how libutp

detects the loss of a previously retransmitted packet.

RFC6817 does not specify a mechanism for recovery from

lost retransmissions, so libutp relies on an RTO firing to

detect this case and initiate another retransmission, leading to

one-second stalls. When LEDBAT flows run over traditional

FIFO bottlenecks, the probability of packet drop (in general)

and retransmission drop specifically are very low except when

induced by competing loss-based traffic. However, in AQM

environments LEDBAT packets are frequently and regularly

dropped as the AQM tries to control queuing delays well

before LEDBAT’s own delay threshold is reached.

The choice of minimum RTO is not well specified by

RFC6817. Simply choosing a smaller minimum RTO value

(200ms for example) can reduce libutp’s stall time and

improve throughput, but does not properly solve the problem.

B. Rapid LEDBAT loss recovery using SACK

Our solution is based on RPLD (Section II-D), optimised

for libutp’s implementation of SACK (not specified by

RFC6817). libutp’s initial loss detection and fast retrans-

mission methods are unaltered.

libutp acknowledges packets rather than bytes and uses

a 32-bit to 128-bit bitmask to selectively acknowledge non-

sequential arrival of packets. SACK information is only sent

if at least one packet is received out of sequence. Given

(dupACKseqnum + 1) is the sequence number of the packet

deemed lost (Plost), the receiver sets the N th bit in the bitmask

of subsequent SACK fields to indicate additional receipt of

packet (dupACKseqnum +1+N). Each SACK thus updates

the sender regarding which of the N packets sent after the

lost packet also have, or have not, been successfully received.

libutp already tracks the most recent transmission time,

and number of times sent, of unacknowledged packets. In

libutp-mod we introduce a new sender-side variable,

maxTA, to track the transmission time of the most recently

sent packet that is known (by ACK or indirectly by SACK bit-

mask) to have been successfully received. Using the following

strategy, libutp-mod rapidly detects when a retransmitted

packet has also been lost and needs to be retransmitted again.

As usual, three dupACKs trigger the first retransmission of

Plost. The SACK field of subsequent dupACKs relating to

Plost tells the sender about newly received packets (poten-

tially updating maxTA) and packets newly declared to be

missing (in addition to Plost ). If maxTA is greater than the

transmission time of any missing packet that has already been

retransmitted at least once, we assume the retransmission has

been lost and the missing packet is retransmitted again.

C. Inter-flow bandwidth fairness

Figure 2 shows the inter-flow bandwidth unfairness ob-

served when one CUBIC TCP flow and one libutp-

generated flow share a path with RTTbase = 60ms, Brate =
10Mbps and PIE, FQ-CoDel or FQ-PIE queue management

for 120 seconds. A libutp-generated flow consumes a larger

share of bandwidth than the CUBIC flow when using PIE, con-

trary to LEDBAT’s goal of being a background or scavenger-

class transport. In contrast, our libutp-mod-generated flow

shares bandwidth much more equitably with the CUBIC flow.

The FlowQueue scheduler of FQ-CoDel and FQ-PIE tends to

normalise the bandwidth sharing, regardless of whether the

LEDBAT flow is generated by libutp or libutp-mod.

libutp’s inter-flow bandwidth unfairness is due to (a) its

faster cwnd growth per RTT, and (b) its refusal to reduce cwnd

more than once per 100ms even when additional packet drops

are detected. The latter point is an issue because modern AQM

bottlenecks can lead to paths with RTTs consistently under

100ms – the CUBIC flow is disadvantaged by backing off

multiple times over the same time period.
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Fig. 2. Throughput of competing LEDBAT and TCP CUBIC flows across
PIE, FQ-CoDel and FQ-PIE AQM (RTTbase = 60ms, Brate = 10Mbps)

D. Stalling at RTTbase < 40ms and Brate < 10Mbps

Stalling of single and multiple libutp-generated flows

is illustrated by running one, three or five LEDBAT flows

for 120 seconds through FIFO, PIE, FQ-CoDel, and FQ-PIE

bottlenecks while varying RTTbase from 2ms to 40ms and

Brate from 250Kbps to 10Mbps in steps of 250Kbps. With

a FIFO bottleneck, we saw 100% link utilisation across the

parameter range (not shown to save space). Figure 3 shows

that with PIE, FQ-CoDel and FQ-PIE, link utilisation results

were rather poor. By contrast, Figure 6 shows libutp-mod-

generated flows achieving far more consistent utilisation across

the same range of network conditions.

1) Link utilisation with libutp-generated flows: Figure

3a shows noticeable peaks and troughs in a single-flow’s

link utilisation using FQ-CoDel at certain combinations of

low Brate and RTTbase, with uniformly bad utilisation when

RTTbase ≤ 6ms. When RTTbase = 16ms we require

Brate ≥ 4Mbps for consistently high utilisation, while with

RTTbase = 20ms we need Brate ≥ 2.5Mbps for consistent

utilisation. Once RTTbase is 40ms or beyond (not shown) we

see good utilisation at Brate < 4Mbps. The gradual drop-off

in utilisation at Brate ≥ 4Mbps occurs when path bandwidth-

delay product (BDP) exceeds the bottleneck’s effective buffer

space (discussed further in Section IV-E). Figures 3d and

3g show improved overall link utilisation as the number of

concurrent flows increases, because multiplexing reduces the

impact of individual flows stalling after retransmission losses.

Figure 3b shows moderate reduction in a single-flow’s link

utilisation when using PIE AQM. The utilisation decline is

most noticeable where RTTbase ≤ 40ms and 1Mbps <

Brate < 5Mbps. As RTTbase and Brate increase the link

becomes better utilised. Similar to the FQ-CoDel case, Fig-

ures 3e and 3h show overall link utilisation improving with

additional concurrent flows.

Figures 3c, 3f and 3i show that using an FQ-PIE bottleneck

results in similar degradation in link utilisation as using a PIE

bottleneck. Again, the overall link utilisation becomes higher

with additional concurrent flows.

2) Underlying problem for libutp-generated flows: Two

things combine to cause the loss of link utilisation seen in

Figure 3. Each AQM keeps bottleneck queuing delay well be-

low LEDBAT’s 100ms threshold, forcing libutp to primarily

respond to loss where it stalls when relying on a one-second

RTO to recover from loss of previous retransmissions. Since

the AQMs themselves regularly drop packets, this increases the

probability of a retransmission being lost and (consequently)

traffic stalling.

Figure 4 illustrates the potential for stalls that underlies

Figures 3a, 3b and 3c. Here we run a single flow over a

path where RTTbase = 2ms and Brate = 2Mbps, and the

bottleneck is FQ-CoDel, PIE or FQ-PIE. Each graph shows

the probability (Dth
p ) of the N th data packet after a packet

loss also being lost (“Drop” curve) and the probability (Rth
p )

of the N th data packet after a loss being the retransmission

of the lost packet (“Retransmission” curve).

In Figure 4a we see that for FQ-CoDel a retransmitted

packet arriving 10 packets after the original drop has a higher

than usual chance of also being dropped. This pattern of packet

drop happens because CoDel (the AQM managing the single-

flow’s FQ-CoDel queue) has a long non-drop phase followed

by an aggressive short drop phase, while the retransmission

pattern depends on path BDP. If the short drop phase covers

the fast retransmission period, there is a high probability

for the retransmitted packet to be dropped, causing RTO to

be triggered. Such behaviour leads to the dramatic loss in

utilisation shown in Figure 3a.

The less dramatic loss of utilisation seen in Figures 3b

and 3c can be understood through Figures 4b and 4c, which

show less dramatic peaks in Rth
p around N = 10 and a lower,

flatter Dth
p for both PIE and FQ-PIE. With a default 20ms2

threshold, PIE drops packets less aggressively overall, and

drops packets more uniformly (based on drop probability) over

time, diluting the probability of both original and retransmitted

packets being hit. Although FQ-PIE with a single-flow is

essentially a single PIE queue, we can see that FreeBSD’s

more up-to-date PIE includes drop de-randomisation which

results in very low Dth
p for N < 5.

3) Impact of libutp-mod: Using the progression of a

flow’s acknowledgement number over a ten second period,

Figure 5 shows the libutp flow regularly stalling for one

second, a libutp flow modified to allow 200ms mini-

mum RTO regularly stalling for 200ms, and a libutp-mod

flow practically eliminating the stalls. Figure 6 shows how

libutp-mod improves on the poor performance seen in

Figure 3. (The results for three flows are same as for five

flows, and hence not shown to save space.)

E. Why utilisation degrades at higher path BDP

We next discuss why for the RTTbase = 40ms scenarios,

Figure 6a shows a libutp-mod flow’s utilisation degrading

when Brate > 2Mbps whilst Figure 3a shows a libutp

flow’s utilisation only starts to degrade for Brate > 4Mbps.

We know that 100% link utilisation requires a transport

protocol to keep enough bytes in-flight to equal or exceed

the path’s BDP (‘fill the pipe’). Since LEDBAT halves cwnd

after detecting packet loss, for continuous 100% utilisation

across congestion epochs we need cwnd to be no less than

BDP after halving. In other words the bottleneck queue ought

to have absorbed at least a BDP of additional bytes before

2Linux PIE is based on the older specification with a larger threshold

Authors’ copy. To appear in the 42nd IEEE Conference on Local Computer Networks (LCN 2017)

October 9-12, 2017. See notice on the first page.
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(a) One flow over FQ-CoDel
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(b) One flow over PIE
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(c) One flow over FQ-PIE
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(d) Three flows over FQ-CoDel
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(e) Three flows over PIE
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(f) Three flows over FQ-PIE
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(g) Five flows over FQ-CoDel
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(h) Five flows over PIE
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(i) Five flows over FQ-PIE

Fig. 3. Link utilisation of libutp-generated LEDBAT flows over FQ-CoDel, PIE and FQ-PIE bottlenecks
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(a) FQ-CoDel AQM
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(b) PIE AQM
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(c) FQ-PIE AQM

Fig. 4. Probabilities of Nth packet being a retransmission and Nth packet being dropped (influencing the loss of retransmitted packets)
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Fig. 5. LEDBAT sequence number versus time – FQ-CoDel

dropping a packet. However, PIE and CoDel emulate small

queues over long periods of time (after their short post-idle

burst-tolerant periods). A LEDBAT flow’s link utilisation will

thus drop below 100% when path BDP exceeds the effective

size of the AQM queue at the time of each packet drop.

The degree of lost utilisation depends on how long it takes

cwnd to regain and exceed BDP after packet loss. More

relevantly, the BDP (and hence bottleneck speed, for a given

RTTbase) at which this phenomenon becomes evident depends

on the value of cwnd at the point of packet loss.

Figure 7 provides a close-up view of the utilisation loss as

a function of BDP in Figure 6a. When RTTbase = 40ms we

clearly see utilisation drop off for Brate ≧ 2.25Mbps, and as

the BDP gradually increases the utilisation decreases to 85%

at Brate = 10Mbps. We can also see similar utilisation drop

off starting at higher Brate for the lower RTTbase = 20ms

and RTTbase = 16ms cases.

In Figure 3a, when RTTbase = 40ms the equivalent

utilisation drop-off starts occuring at at higher BDP, Brate >

4Mbps. This difference is because libutp’s G × MSS =
3000 creates faster cwnd growth every congestion epoch than

occurs with regular TCP and libutp-mod.

Figure 8 compares cwnd versus time for a single libutp

or libutp-mod flow over a path where RTTbase = 40ms,

Brate = 3Mbps and bottleneck uses FQ-CoDel. The libutp

flow’s first packet is dropped at 400ms when cwnd reaches

25KiB, while the libutp-mod flow’s first packet is dropped

at 600ms when cwnd reaches 22KiB. For every subsequent

congestion epoch the libutp flow’s cwnd continues to peak

at a higher value than the libutp-mod flow’s cwnd.

So for BDPs high enough that a libutp flow over FQ-

CoDel avoids regularly stalling, it will achieve slightly higher

utilisation than a libutp-mod flow under equivalent circum-

stances. Rather than being a weakness, libutp-mod is doing

a better job of being no more aggressive than regular TCP.

Authors’ copy. To appear in the 42nd IEEE Conference on Local Computer Networks (LCN 2017)

October 9-12, 2017. See notice on the first page.
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(a) One flow over FQ-CoDel
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(b) One flow over PIE

0 2000 8000 10000

0

20

40

60

80

100

4000� 6000�

L
in

k
 u

ti
lis

a
ti
o

n
 %

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

%DQGZLGWK��.ELW�V�

●�PV�577
�PV�577

��PV�577
��PV�577

��PV�577�
��PV�577�

(c) One flow over FQ-PIE
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(d) Five flows over FQ-CoDel
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(e) Five flows over PIE
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(f) Five flows over FQ-PIE

Fig. 6. Link utilisation of libutp-mod-generated LEDBAT flows over FQ-CoDel, PIE and FQ-PIE bottlenecks
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Fig. 7. Close-up of libutp-mod flow’s utilisation degradation when path
BDP exceeds the bottleneck buffering
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Fig. 8. Comparison of cwnd growth and back-off for libutp and
libutp-mod flows, influencing cwnd after back-off

V. DISCUSSION

Here we summarise our analysis, and consider the conse-

quences of transitioning from libutp to libutp-mod.

A. RFC6817 vs Implementations vs AQM

LEDBAT simultaneously combines delay-sensitive (cwnd

rising and falling according to Equation 1) and loss-sensitive

(halving cwnd upon packet loss) congestion control behaviour.

A LEDBAT flow induces no more than 100ms of queuing

delay, and effectively side-lines itself if queuing delay is

pushed over 100ms by competing, delay-insensitive traffic.

An underlying assumption is that bottlenecks have more

than 100ms of potential buffering, and packet losses are

usually triggered by competing loss-based flows. We have

identified issues arising when modern AQMs such as FQ-

CoDel, PIE and FQ-PIE impose frequent packet losses on

LEDBAT flows while forward queuing delays are ≪ 100ms.

We tested with path RTTs and sub-10Mbps bottleneck

speeds common for consumer internet upstream access, and

observed libutp stalling often and achieving suboptimal

throughput. The root cause is RFC6817’s reliance on an

RTO to handle loss of retransmitted packets combined with

libutp’s one second minimum RTO. Our libutp-mod

successfully demonstrates a minimally-invasive solution build-

ing on the simple SACK mechanism already present in

libutp. Future revisions of RFC6817 ought to address

expedited handling of lost retransmissions.

libutp grows cwnd more aggressively than RFC6817

recommends (by using G×MSS = 3000bytes in Equation 1),

and reduces cwnd less aggressively by limiting changes to

once every 100ms. This has little downside when operating

through large FIFO queues, as libutp stabilises at 100ms

forward queuing delay or defers to competing TCP flows. But

when competing over a single-queue AQM like PIE, libutp

fails to defer to a regular TCP flow. These two implementation

choices should be revisited.

B. Transition Considerations

We envisage two transitions – home internet services mov-

ing from FIFO to AQM bottlenecks, and libutp-based

applications upgrading to the enhancements in libutp-mod.

Given uncoordinated real-world software updates, we expect

periods where libutp and libutp-mod flows from differ-

ent devices compete with each other and/or regular TCP flows

over either FIFO or AQM bottlenecks.

Additional experiments with a FIFO bottleneck (not

shown to save space) revealed the following outcomes: (a)

libutp-mod flows correctly defer to competing loss-based

TCP flows; and (b) when libutp and libutp-mod flows

compete in the absence of loss-based flows, the libutp-mod

flow receives a lower long-term throughput share proportional

to the ratio of their respective G×MSS terms. Experiments

showed similar throughput unfairness exists when libutp

and libutp-mod flows compete through a PIE bottleneck.

libutp-mod’s deferal to libutp under these circum-

stances seems an acceptable trade-off. It is consistent with
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LPCC goals, and avoids the non-LPCC behaviour of using

G × MSS = 3000bytes when competing with loss-based

TCP over single-queue AQMs (Figure 2). Furthermore, the G

term’s impact is negated when libutp and libutp-mod

flows compete through FQ-CoDel or FQ-PIE bottlenecks.

Both libutp and libutp-mod flows exhibit the ‘late-

comer advantage’ [2] over FIFO bottlenecks, unavoidably

due to LEDBAT’s infrequent recalculation of OWDbase.

While libutp’s interpretation of RFC6817 out-competes

libutp-mod in the transitional FIFO bottleneck case,

libutp-mod flows exhibit preferable LPCC behaviour when

competing with loss-based TCPs and using AQM bottlenecks.

VI. CONCLUSIONS

LEDBAT is a scavenger class transport protocol with con-

gestion control based on one-way delay measurements to avoid

adding more than 100ms of additional forwarding delay over

FIFO bottlenecks. As an attractive alternative to TCP for

latency-tolerant background file transfers, LEDBAT has been

implemented by widely used peer-to-peer applications and

commercial software update systems. However, the emergence

of new AQM schemes in consumer contexts mean bottleneck

queuing delays may be capped well below the levels required

to activate LEDBAT’s delay-based congestion control. This

pushes LEDBAT to rely on loss-based behaviours that our

paper demonstrates are (a) not fully specified in RFC6817,

and (b) incorrectly interpreted by the widely deployed uTorrent

Transport Protocol (uTP) library, libutp.

We demonstrate that libutp flows can regularly stall and

provide unexpectedly degraded performance under specific

combinations of low path RTT and bottleneck bandwidth. We

further demonstrate conditions under which a libutp flow

will actually out-compete a CUBIC TCP flow when sharing a

PIE bottleneck. Both behaviours run counter to LEDBAT’s

design goals, and are triggered by the low queuing delay

targets of modern AQMs. We propose a number of simple

adjustments that eliminate the observed misbehaviours. More

broadly, the interaction between modern AQM and LPCC

transport protocols is not fully understood and would benefit

from further detailed study.
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