This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

Using Active Queue Management to Assist [oT
Application Flows in Home Broadband Networks

Jonathan Kua, Member, IEEE, Suong H. Nguyen,
Grenville Armitage, Member, IEEE,and Philip Branch, Member, IEEE

Abstract—Internet of Things (IoT) applications such as tele-
health, smart appliances and smart energy are becoming more
common within the home. However, they must compete for
bandwidth with traditional applications such as video streaming,
video conferencing and bulk file transfers. Such competition can
be detrimental to the IoT applications when home gateways use
traditional first-in-first-out (FIFO) queue management. Simply
increasing bandwidth between the home gateway and the ISP,
even when possible, provides no guarantee of bandwidth for IoT
applications since many traditional applications will consume as
much bandwidth as is available. In this paper we explore whether
Active Queue Management (AQM), now being implemented
in home gateways, can provide protection for IoT flows. We
investigate the effect of different AQM algorithms deployed at the
home gateway in scenarios with multiple concurrent application
flows. We find that deploying multi-queue FQ-CoDel or the
hybrid “FQ-PIE” at the home gateway can provide excellent
capacity sharing, flow isolation and good protection in terms
of throughput and queuing delays for IoT flows and other
applications, which cannot be achieved with traditional FIFO
or other single-queue AQMs such as PIE.

Index Terms—IoT, FIFO, AQM, home broadband networks.

I. INTRODUCTION

Recently we have witnessed the fast growth of the Internet
of Things (IoT), the network of physical objects with the
capability to connect to each other and to other Internet-
enabled devices and systems. IoT within the home is being
realised through the emergence of Internet enabled devices
including smart appliances, smart sensors and health and
fitness monitors. Such systems can provide services such as
home security and safety, energy management and remote
health monitoring [1].

IoT applications usually exhibit event-triggered or low-rate
traffic patterns. Event-triggered traffic might include a washing
machine sending a text to a resident’s phone once a wash cycle
finishes, while low-rate traffic might include physiological
sensors periodically sending measurements of vital signs to
a remote patient portal. Many IoT scenarios involve objects
sending telemetry offsite, so IoT flows compete for (often
scarce) upstream capacity out of the home.

Even when requiring only low bandwidth, IoT flows often
have strict Quality of Service (QoS) requirements (such as

The authors are with the Internet For Things (I4T) Research Lab,
Swinburne University of Technology, Australia. E-mail: jtkua@swin.edu.au;
nhsuong @gmail.com; garmitage @swin.edu.au; pbranch@swin.edu.au

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

consistent delay and low packet loss) because of their im-
portance such as real-time telehealth monitoring or real-time
surveillance [2]. Competition over a shared broadband connec-
tion with aggressive Internet traffic (such as bulk data transfer
or video streaming) can violate these QoS requirements.
Protecting [oT flows is an important new task for modern home
gateways, for which there are several approaches.

The simplest approach of deploying faster home broadband
connections has limited utility. Traditional Internet applica-
tions are elastic, so they utilise any increase in available
bandwidth and still cause degraded performance for competing
IoT flows. This is particularly true when the home gateway
uses first-in-first-out (FIFO) queue management — the elastic
flows induce significant queuing delays, increasing the round
trip time (RTT) experienced by all flows sharing the gateway.
Another approach is traffic differentiation, with IoT flows
assigned to the high priority class [3]. Unfortunately this
approach adds configuration complexity, limiting its utility to a
small, technically-minded subset of the consumer market. Our
paper aims to investigate the efficacy of an emerging third so-
lution based on Active Queue Management (AQM) techniques
inside the home gateway. Modern AQM techniques promise
to keep queuing delays down without requiring custom local
configuration in home gateways.

PIE (Proportional Integral controller Enhanced [4]), CoDel
(Controlled Delay [5]) and FQ-CoDel (FlowQueue-CoDel [6])
are three new AQM schemes presently being considered by the
Internet Engineering Task Force (IETF) for deployment on ISP
and consumer sides of home broadband links. Much work has
studied the performance of different AQMs for a variety of
traditional Internet applications, a summary of which can be
found in [7]. However, we are not aware of any experimental
work evaluating the potential performance of sparse loT-like
flows under different AQMs in a home broadband network
environment where a blend of different traffic types is present.
We contribute to this space by experimentally evaluating
and characterising the impact of FIFO and AQMs on the
performance of IoT-like flows in terms of achieved throughput
and induced queuing delays. We also study the implications
of AQMs on other traffic flows, their benefits and trade-offs.

Using an in-house testbed [8], we investigate the effect of
PIE and FQ-CoDel AQMs' algorithms deployed at the home
gateway on the performance of [oT flows in scenarios where
various traffic mixes are competing with IoT flows at different

I'We do not test CoDel, as the CoDel authors themselves recommend
deployment efforts focus on FQ-CoDel.

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

network conditions such as path delays and Internet connection
bandwidths. We also evaluate the impact of a novel “FQ-PIE”
hybrid AQM scheme. We find that FQ-based algorithms (FQ-
CoDel, FQ-PIE) provide excellent capacity sharing and good
protection in terms of throughput and delay for the IoT flows
in all tested cases, which cannot be achieved with single-
queue PIE or FIFO queue management. The advantages of
FQ-Codel and FQ-PIE are evident under highly constrained
circumstances, where applications that adopt adaptive stream-
ing strategies are protected from collateral damage. Hence,
we conclude that multi-queue FQ-based schemes provide
good incentives for home gateways to support AQMs where
IoT applications share broadband connection with traditional
Internet traffic.

The rest of the paper is organized as follows. First, a brief
summary of IoT applications, adaptive streaming applications
and AQM algorithms is provided in Section II. The experiment
setup is described in Section III, followed by experimental
results and analysis presented in Section IV. Finally, we offer
concluding remarks and outline future work in Section V.

II. BACKGROUND

This section summarises some IoT applications and their
QoS requirements, adaptive video streaming applications and
PIE, CoDel, FQ-CoDel, FQ-PIE AQMs.

A. IoT applications

We focus on IoT applications that generate regular offsite
traffic, categorized into three groups: health telemonitoring,
energy efficiency, and home security [9].

1) Health telemonitoring: Together with teleconsulation
and telediagnosis, telemonitoring is an important part of
telemedicine. To monitor the health condition of a patient, their
vital signs (such as Electrocardiogram - ECG, blood pressure,
pulse oximetry and glucose level) are periodically collected by
implanted or wearable sensors, then transmitted to a remote
patient portal for storage and/or processing. The portal will
be accessed by health professionals either immediately to
respond to any alarms or later to check/diagnose the patient’s
health. In some cases actuators may be instructed to perform
immediate action upon detecting abnormalities. Other signs,
such as Electroencephalogram (EEG) and Electromyogram
(EMG) signals, may also be monitored remotely.

These signs and their application-layer bitrates are sum-
marized in [10] and [11], which can be divided into two
groups: high bitrates (>10Kbps, such as EMG and EEG) and
low bitrates (<10Kbps, such as blood pressure and glucose
level). In our experiments, we choose 2Kbps and 100Kbps to
represent low and high rate [oT flows. These two bit rates are
also representative for IoT applications of other groups.

Delay tolerance for telemonitoring traffic depends on
whether the service is real-time (emergency scenarios) or not
(non-emergency scenarios) [12]. Both real-time and non real-
time telemonitoring services are intolerant of data loss. Delay
constraints for real-time services are generally < 250ms [13].

2

2) Energy efficiency: The emergence of smart appliances
such as ovens, fridges, dryers, washing machine, light bulbs,
meters and thermostats can lead to the development of home
energy management to reduce the cost of energy provision
in households. These smart appliances can send their real-
time energy consumption to a remote server which uses it to
analyse, optimize and then control the energy usage of these
appliances in an effective manner. The bitrates required by
smart appliances for energy management purposes can vary
between 1.4Kbps and 250Kbps [9].

3) Home security: These applications range from simple
event-based alarm/detection sensors to real-time video surveil-
lance. While event-based traffic is very low bitrate, real-time
surveillance generates consistent outbound traffic from tens of
Kbps to more than 10Mbps depending on camera quality [14].

B. Adaptive streaming applications

IoT applications are likely to be deployed in home networks
where video streaming applications are already in regular
use. Dynamic Adaptive Streaming over HTTP (DASH) is an
emerging technology that has recently become an interna-
tional standard for content delivery [15]. DASH-like streaming
strategies aim to provide uninterrupted content streaming while
adapting video quality in response to dynamically varying
network conditions. Rather than being a continuous stream
of data, DASH flows involve periodic ON-OFF traffic cycles.
Consequently we are interested in the implications of DASH
traffic and IoT flows sharing the same bottleneck.

In DASH systems, a video content is encoded into multiple
versions at different discrete bitrates, or representation rates
(RR) [16]. Each version is then fragmented into multi-second
video chunks. Chunks are served to clients using standard
HTTP servers, which rely on the underlying TCP layer to reg-
ulate the actual transmission of packets making up each chunk.
DASH clients use a media presentation description (MPD)
file associated with the video content to identify available
chunks and RRs. DASH clients implement an adaptive bitrate
algorithm (ABR) [17] in order to retrieve chunks encoded
at the highest RR sustainable by recently observed network
conditions.

We first define achieved rate (AR) as chunk size divided by
the time taken to receive it. When AR is high, DASH will seek
to retrieve future chunks encoded at a higher RR to provide
better quality of experience. When AR is low, DASH will
seek to retrieve future chunks encoded at a lower RR to avoid
playout buffer under-run. The client will pre-fill a local playout
buffer with multiple chunks before initiating local playback to
minimise video stalls in content during playback. The DASH
client’s ABR algorithm helps to maintain an adequate backlog
of content in the face of fluctuating network conditions.

C. Active Queue Management (AQM)

Recent IETF interest in new AQM schemes (revisiting ideas
from at least the late 1990s, such as RFC 2309 [18]) has been
motivated by the proliferation of oversized buffers in network
devices (aka bufferbloat) [19], [20]. AQM schemes aim to
either drop, or apply Explicit Congestion Notification (ECN)

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

marking to, packets at far lower levels of queuing delay than is
typical of classical FIFO (or tail drop) queue discipline.? Here
we summarise three AQM schemes presently being considered
by the IETF — PIE [4], CoDel [5] and FQ-CoDel [6]; and a
novel “FQ-PIE” [21] hybrid scheme.

1) PIE and CoDel : PIE and CoDel operate on single
queues and keep queuing delays low by dropping packets when
queuing delays persistently exceed a target delay, Tiqrget-

a) PIE : PIE [4] introduces a burst tolerance parameter
which (by default) allows packets arriving within the first
150ms of an empty queue to pass successfully. After this,
when a packet arrives, it is randomly dropped with a certain
probability. This probability is periodically updated, based on
how much the current queuing delay (estimated from the queue
length and the dequeue rate) differs from T},,ge¢ = 15ms and
whether the queuing delay is currently increasing or decreas-
ing. Packets of ECN-enabled flows will be marked instead
of being dropped when the dropping probability is <10%.
RFC8033 also adds drop probability auto-tuning (maintaining
queue stability by avoiding large swings in drop probability)
and drop derandomisation (preventing packet losses from
occurring too close or too far apart).

b) CoDel: CoDel [5] tracks the (local) minimum queuing
delay experienced by packets in a certain interval (initially
100ms). When the minimum queuing delay is less than
Tiarget = dms or the buffer size is less than one full-size
packet, packets are neither dropped nor ECN marked. When
the minimum queuing delay exceeds Tiqrget, CoDel enters the
drop state where a packet is dropped and the next drop time
is set. The next drop time decreases in inverse proportion to
the square root of the number of drops since the dropping
state was entered. When the minimum queuing delay is below
Tiarget again, CoDel exits the drop state.

2) FQ-CoDel: In FlowQueue-CoDel [6], flows are classi-
fied into one of 1024 (by default) different queues by hashing
the 5-tuple of IP protocol number and source and destination
IP and port numbers. Each queue is separately managed by
the CoDel algorithm. FQ-CoDel uses a Deficit Round Robin
(DRR) scheme to service these queues in which each queue
can dequeue up to a quantum of bytes (one MTU by default)
per iteration. This scheme gives priority to queues with packets
from new flows or from “sparse” flows with packet arrival
rate small enough so that a new queue is assigned to them
upon packet arrival. A bottleneck managed by FQ-CoDel can
achieve low latency (due to CoDel), relatively even capacity
sharing (due to the fixed hashing function) and priority for
low-rate or transactional traffic (e.g. DNS and VoIP).

3) FQ-PIE : One of our novel contributions is evaluating
“FQ-PIE” [21]. Whilst combining FlowQueue with PIE was
alluded to by PIE’s original developers, [21] is the first well
documented combination of the FQ aspect of FQ-CoDel with
PIE’s individual queue management. Like FQ-CoDel, FQ-
PIE hashes flows into one of N sub-queues, then applies
PIE on these queues and services them with a form of DRR
scheduling, prioritising queues with packets from new flows.

2 Aiming to avoid the large variations in queuing delays that occur when
TCP’s capacity probing fills and drains bufferbloated FIFO queues.

3

ITII. EXPERIMENT SETUP

Here we describe our experimental testbed and the scenarios
for exploring interactions between IoT and non-IoT traffic.

A. A home network blending IoT and traditional traffic

We envisage a home where [oT devices and other consumer
services access remote servers across their ISP’s broadband
last-mile link. The last-mile is commonly asymmetric and a
bottleneck for traffic both towards the home (downstream)
and away from the home (upstream). The challenge for
IoT services occurs when a mix of traffic overlaps in time,
whether due to explicit action of the end-user(s) or background
activities launched by in-home devices without end-user in-
tervention. Whether brief or long-lived, the competition for
last-mile resources degrades the quality of the IoT service.

Our test conditions explore the potential impact of FIFO and
AQMs on various concurrent application flows, when one each
of low and high-rate IoT traffic, DASH multimedia stream,
bidirectional video calls, upstream and downstream bulk trans-
fers concurrently compete through a single bottleneck.

B. Testbed topology and devices

Figure 1 shows our experimental testbed (based on
TEACUP [8]). The bottleneck router uses 64-bit FreeBSD
10.1-RELEASE to provide a two-way path of configurable
bandwidth and latency between client(s) on 172.16.10.0/24
and server(s) on 172.16.11.0/24. Hosts run 64-bit FreeBSD
10.2-RELEASE-p7 with NewReno as the default TCP algo-
rithm or 64-bit openSUSE 12.3 (kernel 3.17.4) with CUBIC
as default TCP algorithm. For optimal interactive perfor-
mance, hosts emulating telemonitoring traffic have Nagles
algorithm [22] disabled on sources and delayed ACKs disabled
on destinations.

C. Traffic generation

Our traffic flows consist of low-rate and high-rate [oT flows
(IoTjow and I0Thien), multimedia streaming (DASH), bidirec-
tional video calls (VideoCall), and file uploads/downloads
(BulkUpload/BulkDownload) as described in Table I. We
emulate IoT applications that use TCP transport for reliability
and that limit their maximum payload size (excluding TCP/IP
header) to 100B (as in the ZigBee protocol [23]).

Control Network r”"‘(ﬁ w'x”\) Data and control server
- 0 || DHCP4TFTP server
~ —d

- AR
.- Pa s L. Teel
- - ” - L s S
.- PR . oS Teell Te.al
- - ” - 1 ~ O
" e e ! RO - P
i e e ' Testbed === e e
= 7 u ' P b4 =
1
1
1
1

y y y
N ;ﬂtleneck 1 Router

i) y
(7 172.16.10.0/24 172.16.11.0/24]3
\\ \ . y

S —

Experiment Networks

’>,/
-~

"Hol mewnie};vgrk” "The Tl?t;}}iet"

Fig. 1: Testbed emulating a home connected to the Internet [8].

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of
Things Journal

TABLE I: Traffic generation of application flows

e Application-layer Host OS and Transport
Name Description bitrate RTTyqse protocol
Low-rate telemonitoring traffic, using nttcp [24] to send
ToTow 100B packets at 2.5 packets/sec upstream over a TCP 2Kbps 40ms FreGIIISSV]?RS;IJCP
connection to a remote server.
High-rate telemonitoring traffic, using nttcp to send 100B
T0Thigh packets at 125 packets/sec upstream over a TCP connection 100Kbps 40ms Freﬁ:\?RigCP
to a remote server.
Video call, using using nttcp to generate concurrent
VideoCall upstream and downstream UDP flows of 700B packets 280Kbps 20-240ms Linux & UDP
every 20ms.
Bulk file transfers, using iperf [25] to send full-size packets Linux & TCP CUBIC
BulkUpload / . T) i . (default for Android
over a TCP connection as fast as possible upstream or Elastic 20-240ms . .
BulkDownload devices and Linux-based
downstream (greedy flows). content servers)
A dash.js v2.0.0 client [26] retrieving 2-sec BigBuckBunny . I.)AS.H server: Fre_el’SSD
. . . Variable (inspired by Netflix’ use
video chunks (with 20 RRs ranging between 46Kbps and .
DASH . (depending on 40ms of FreeBSD for Open
4.2Mbps [27]) from DASH Server based on lighttpd v1.4.35 .
retrieved RR) Connect servers [29]) &
web server [28]. TCP NewReno

D. Emulated bottleneck and path conditions

Using “X/YMbps” to represent X Mbps downstream and
Y Mbps upstream, we explore cases where the ISP’s last-
mile provides rates of {1.5/0.5, 4/1, 12/1, 25/5}Mbps. We
represent connections to local/intra-ISP and off-net/inter-ISP
with RTTp,se (a path’s intrinsic, unloaded RTT) ranging
from 20ms to 240ms for bidirectional video call, upstream
and downstream TCP bulk transfers. We fixed IoT flows
and DASH streams’ RT1Tp.sc to 40ms to emulate tele-
health/telemonitoring services based nearby (e.g. local hospital
or medical provider) and content streaming from a local
Content Delivery Network.

Our bottleneck router uses FreeBSD’s ipfw/dummynet
framework to emulate separately configurable bottlenecks and
artificial latency in each direction [21]. In a given direction
packets first hit a rate-shaping stage (representing the bot-
tleneck link bandwidth) which incorporates the queue man-
agement (FIFO, PIE, FQ-CoDel and FQ-PIE) and bottleneck
buffer size selected for a given experiment.> Each packet is
then subjected to additional configurable one-way delay as
required (with sufficient buffering to ensure no packets are
dropped after passing through the AQM/rate-shaping stage).
We emulate RT'Tp,s. by adding RTTpase/2 in each direction.

The bottleneck buffer is 490 packets for FIFO experiments
(to exceed each path’s bandwidth delay product) and 1000
packets for PIE, FQ-CoDel and FQ-PIE experiments. As they
are largely intended to require minimal operator control or
tuning, we used PIE, FQ-CoDel and FQ-PIE at their default
settings. ECN is disabled on all hosts.

E. Measurements

Throughput plots in Section IV are derived from the IP-
layer bytes transferred during a five-second window of time

3We used FreeBSD because its AQM implements PIE based on the
algorithm described in RFC 8033 [4] whereas at the time Linux PIE was based
on an earlier draft [30] with different burst tolerance behaviour. Linux PIE
has not changed between kernel 3.14 and 4.9, http://Ixr.free-electrons.com/
diff/net/sched/sch_pie.c?diffvar=4.9;diffval=3.14. Both Linux and FreeBSD
implement CoDel and FQ-CoDel using the current drafts [5], [6].

sliding forward in steps of 0.25 seconds. The Synthetic Packet
Pairs (SPP) tool [31] was used to estimate non-smoothed host-
to-host RTT values from packets captured by tcpdump [32] at
each host. For DASH flows, per-chunk AR were calculated
using payload lengths extracted from HTTP response headers
and the time taken to transfer each chunk. Client’s HTTP GET
requests were parsed to obtain the requested RR.

All experiments run for 200 seconds. Per experiment
roughly 680 throughput samples and over 5000 RTT mea-
surements are collected between t=30sec (after DASH buffer
pre-fill and other traffic settles) and t=200sec. We confirmed
that results from these experiments are reproducible.

IV. RESULTS AND ANALYSIS

Here we present and discuss results of the experiments
described in Section III. In the remaining discussion we refer
to the VideoCall, BulkUpload and BulkDownload traffic as
competing flows whose RTTp,se (unloaded path RTT) is
being varied. First we present the impact of these AQMs
on the non-DASH flows’ IP-layer throughput and all flows’
induced queuing delays in Section IV-A, then we explore the
impact on DASH stream performance (AR and RR) in Section
IV-B. For graphs encompassing a wide range of application
throughputs or induced RTTs we use logarithmic Y-axis scales
for readability. Where visible, “whiskers” above/below the
median depict the 75" and 25" percentiles of throughput
or RTT samples respectively.

A. Throughput and induced queuing delays

Figures 2 and 3 are boxplots of the throughput and in-
duced RTT experienced by application flows across all four
queue management techniques in high (25/5Mbps), mid-range
(12/1Mbps) and low (1.5/0.5Mbps) bandwidth scenarios. We
ran every experiment with RTTp,s. from 20ms to 240ms
in steps of 20ms, and confirm that showing results for
RTTyse = {40,140,240}ms adequately captures the influ-
ence of RTTyqs.. To further save space we do not present
4/1Mbps results, as they are dominated by the same 1Mbps
uplink bottleneck as the 12/1Mbps scenario.

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://lxr.free-electrons.com/diff/net/sched/sch_pie.c?diffvar=4.9;diffval=3.14
http://lxr.free-electrons.com/diff/net/sched/sch_pie.c?diffvar=4.9;diffval=3.14

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

4 |oTlow
loThigh

% VideoCall(up) = BulkUpload
® VideoCall(down) * BulkDownload

Throughput (kbps)
;

A A A A A A A A A A A A
1071 B T T T T T T T T T T T T
RTTphase: 40 140 240 40 140 240 40 140 240 40 140 240
Queue Type : FIFO PIE FQ-CoDel FQ-PIE
(a) 25/5Mbps
107
4 |oTlow % VideoCall(up) = BulkUpload

loThigh = VideoCall(down) * BulkDownload

¥k x| O * % x| * ¥ x

Ml el | el el ol | E i e

10"

Throughput (kbps)
:

104 h T T T T
RTThase: 40 140 240 40

T T
140 240 40

T T T T
140 240 40 140 240

Queue Type : FIFO PIE FQ-CoDel FQ-PIE
(b) 12/1Mbps
107
> 4 |oTlow % VideoCall(up) = BulkUpload
Q. loThigh ® VideoCall(down) * BulkDownload
o
£ 10
e
3 10° ¥k K|k kx| kK x| k%
< S T T T I S S S [S
2 1
_g 10 A A A A A A A A A A A A
'_
10_1 h T T T T T T T T T T T T
RTThase: 40 140 240 40 140 240 40 140 240 40 140 240
Queue Type : FIFO PIE FQ-CoDel FQ-PIE

(c) 1.5/0.5Mbps

Fig. 2: Throughput per application (log scale) for {25/5, 12/1,
1.5/0.5}Mbps links; FIFO, PIE, FQ-CoDel and FQ-PIE queue
management; R7TT},s. applied to competing flows.

1) High bandwidth — 25/5Mbps case: Figures 2a and 3a
show how throughput and induced RTT for each flow vary
with queue management and R7T T}, of the competing flows
for a 25/5Mbps bottleneck. The tested bottleneck bandwidth
provides sufficient capacity for all application flows over
all AQMs to achieve maximal throughput, hence capacity
sharing of these queuing schemes are not quite evident. Bulk
download performs slightly worse in FIFO than in AQMs
in terms of throughput, and FIFO trials exhibited significant
induced RTT which is consistent with previous bufferbloat
observations [20]. All three AQM cases show significantly
lower induced RTT than for FIFO. Due to being a single
shared queue, PIE shows higher median and larger variations
in induced RTT than multi-queue FQ-CoDel and FQ-PIE.

2) Mid-range bandwidth — 12/IMbps case: Figures 2b
and 3b show how throughput and induced RTT for each flow
vary with queue management and R7T7},s. of the competing
flows for a 12/1Mbps bottleneck. The difference in capacity
sharing and queuing delay management is more evident in this

10° - 4 |oTlow % VideoCall = BulkUpload
g loThigh DASH * BulkDownload
l_ 3
E 10 AXBE axomg Ak
E N A% Lt e .
o} 10 $x** 4*# *5& x % *xék *#
© 774 4
c
1071 a T T T T T T T T T T T T
RTThase: 40 140 240 40 140 240 40 140 240 40 140 240
Queue Type : FIFO PIE FQ-CoDel FQ-PIE
(a) 25/5Mbps
10° - 4 |oTlow X VideoCall = BulkUpload
g loThigh DASH * BulkDownload
||: 103 | AXmE A XM AR
o
kel O o foie| B L) "
8 10 - # X K *** o ke
E LR AE ST AE
£
1071 B T T T T T T T T T T T T
RTTpase: 40 140 240 40 140 240 40 140 240 40 140 240
Queue Type : FIFO PIE FQ-CoDel FQ-PIE
(b) 12/1Mbps
—~ 105 4 |oTlow % VideoCall = BulkUpload
g loThigh DASH * BulkDownload
: Apqmic Adamk Ak
= 10°
x L)
— ovm ook prwe) o KN AL X X'I'* Kok
8 1o A T S N VS P S,
>
©
£
10_1 B T T T T T T T T T T T T
RTTbase: 40 140 240 40 140 240 40 140 240 40 140 240
Queue Type : FIFO PIE FQ-CoDel FQ-PIE

(c) 1.5/0.5Mbps

Fig. 3: Induced RTT per application (log scale) for {25/5, 12/1,
1.5/0.5}Mbps links; FIFO, PIE, FQ-CoDel and FQ-PIE queue
management; R7TT},s. applied to competing flows.

scenario. FIFO has the worst capacity sharing ability, inter-
leaving packets from different flows until the buffer is filled.
Under FIFO all traffic flows experience around 2700ms of
induced RTT (over ten times the highest RTT},sc). The 10Thign
flow is significantly impacted, unable to achieve its 100Kbps
application-layer (~150Kbps IP-layer) target upstream bitrate
while competing with the greedy upstream bulk transfer and
upstream VideoCall under such high RTT conditions. PIE
shows significant reduction in queuing delays and modest
capacity sharing, allowing IoTy;gy to achieve its target bitrate
and bulk download to achieve a higher throughput than in
FIFO case. FQ-CoDel and FQ-PIE provide the best latency
reduction, with small variations in queuing delays.

3) Low bandwidth — 1.5/0.5Mbps case: Figures 2c and 3c
show how throughput and induced RTT for each flow vary
with queue management and R7TTj,s of the competing flows
for a 1.5/0.5Mbps bottleneck. Intuitively, this low bandwidth
scenario can result in undesirable capacity sharing and low
achieved throughput. FIFO again exhibits the usual bufferbloat

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

behaviour with median induced queuing delays up to 5000ms.
While 10T,y achieves its desired throughput, IoTyg, suffers
lower throughput when trying to compete with the greedy up-
stream bulk transfer and upstream VideoCall across 0.5Mbps
capacity. PIE shows significant reduction in induced queuing
delays, but IoTy;gn still just misses achieving its target bitrate.
FQ-CoDel and FQ-PIE both show significant improvements,
enabling IoTygn flow to achieve its target bitrate, with much
lower and consistent (minimal spreading) induced queuing
delays.

4) Discussion: Using AQM yields benefits compared to
FIFO across all bottleneck bandwidths. Induced RTTs are sig-
nificantly reduced, and in some cases throughput is noticeably
improved.

When using FIFO we see significant induced RTTs (the
known side-effect of bufferbloat), increasing as link speeds
decrease (Figures 3a, 3b and 3c). The induced RTTs recorded
for the downstream flows are significantly dominated by the
congestion-induced queuing delays in the upstream. We do
not show the 4/1Mbps results as both 12/1Mbps and 4/1Mbps
cases have the same upstream speed and thus the same
dominant component of the overall delays. The 25/5Mbps case
has a ‘less congested’ upstream, keeping overall delays lower.

Figure 4 illustrates how bufferbloat-induced RTTs can also
be detrimental to throughput in the FIFO cases. Despite
running over a 12/1Mbps link, the BulkDownload flow’s
throughput is less than 2Mbps under FIFO while jumping to
between 4-8Mbps with the AQMs. In the FIFO case the path’s
RTTs around 2.7 seconds lead to a bandwidth delay product
(BDP) higher than the maximum TCP window allowed by
common end-hosts, thus limiting the BulkDownload flow’s
achievable throughput. In contrast, the lower RTTs when using
PIE, FQ-CoDel or FQ-PIE allow the BulkDownload flow’s
TCP connection to better utilise the path’s shared capacity.
(This is also a contributing factor to the poor throughput
achieved by the IoThign flow when using FIFO compared to
the AQM schemes.)

Figure 4’s BulkDownload results also illustrate the trade-
offs on the performance of long-lived TCP flows when us-
ing AQMs over long RTT paths. By providing congestion
signalling at relatively low queuing delays, AQMs effect a
‘short queue’. When the AQM bottleneck’s peak queue length
is less than the path’s BDP, the TCP sender’s congestion
window (cwnd) drops below BDP each time the AQM triggers
a TCP back-off, which prevents 100% utilisation during each
congestion epoch.

All AQMs allow maximal throughput in the 25/5Mbps case.
PIE (with its single queue) shows significantly lower queuing
delays than FIFO, but higher and more variable queuing
delays than FQ-CoDel and FQ-PIE. The characteristics of
FlowQueue’s modified DRR scheduler described in Sections
II-C2 and II-C3 enable FQ-CoDel and FQ-PIE to provide each
traffic flow with a dedicated sub-queue, allowing each flow to
achieve lower and more consistent queuing delays. FQ-PIE
can exhibit higher induced delays (and wider variations in
induced delay) than FQ-CoDel because CoDel has a lower
burst-tolerance and target delay threshold than PIE, effectively
emulating a shorter queue than PIE. (For example, the DASH

6

12
m m BulkUpload * BulkDownload
Q 10 H
QO
2 s
-
3 6 *
£ by
2 b
o
= 5
= * k¥
~ 0 - = = [} u [L] = = L] L] u
T T T T T T T T T T T T
RTTphase: 40 140 240 40 140 240 40 140 240 40 140 240
Queue Type : FIFO PIE FQ-CoDel FQ-PIE

Fig. 4: Each AQM improves BulkDownload performance
relative to bufferbloated FIFO (12/1Mbps link, linear y-axis).

flow’s RTT over FQ-PIE in Figure 3a is relatively high because
every two seconds the DASH flow is able to enqueue many
more packets during PIE’s burst tolerance period than it can
enqueue over FQ-CoDel.)

FQ-based schemes are superior in terms of adaptive capacity
sharing. This is attributable to the FlowQueue scheduler priori-
tising ‘new’ or ‘recently-seen’ flows and sharing the capacity
equally between internal sub-queues that are backlogged with
packets. The TCP/IP traffic of our IoT flows exhibits periodic
ON-OFF behaviour with relatively low bitrate. When a TCP
packet from the IoT flow arrives, the FQ scheduler enforces
capacity sharing so the IoT flows are not starved of capacity,
regardless of how many bulk TCP flows are competing at the
bottleneck. During the relatively long gaps between IoT flow
packets, the FQ scheduler allows any bulk TCP flow(s) to
utilise otherwise-unused bottleneck capacity, and if the sub-
queues belonging to IoT flows drain, the next IoT ‘burst’ is
prioritised by the FlowQueue scheduler as a new flow.

The impact is of FQ-based schemes can be summarised
as follows whenever bulk (continuous) TCP flows compete
with application-limited (low-rate) ON-OFF TCP flows: The
bulk flows will consume whatever capacity is available while
the application-limited flow is typically forced to re-grow
its cwnd from during successive ON periods. Consequently
the application-limited flow may fail to achieve fair capacity
sharing unless sharing is enforced (in the case of FlowQueue’s
DRR scheduler) or the overall RTT is low enough that
application-limited flow’s ON periods last for multiple RTTs.
Using FQ-CoDel or FQ-PIE can satisfy both conditions, using
PIE can often satisfy the latter condition, and using FIFO can
easily fail on both counts. We discuss the impact on DASH
flows in the next sub-section.

B. DASH video streaming performance

Figure 5 captures the impact of various traffic mixes over
different queue management techniques on DASH median
per-chunk throughput (AR) and target video quality (RR).
Regardless of bandwidth availability, FIFO delivers the worst
DASH performance, retrieving very low RRs in most cases,
and causing frequent video stalls and rebuffering events in the
1.5/0.5Mbps case (Figure 5d) where even the lowest RR is not
sustainable.

As discussed in Section IV-A4, FQ-based schemes provide
excellent flow isolation and capacity sharing. Since our ex-
periments apply AQMs in both directions, the behaviour of

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

™ 154—— PIEAR —*— FQ-PIEAR -®- FQ-CoDel AR —4— FIFO AR
_% -+- PIERR -%-- FQ-PIERR -#®- FQ-CoDel RR--4-- FIFORR
=
~ 10).(wy;/x_—__bu—\—x—_}—l;":!ﬁ
Q
o
[
& ‘A\vj—\'/\
c 54
© D e e e a—— e T S e a—
el
Q
= 04 & P -~ A Dy
20 40 60 80 100 120 140 160 180 200 220 240
RTTpase of Competing Flow (ms)
(a) 25/5Mbps case
™ 2'57+ PIE AR — FQ-PIEAR -®- FQ-CoDel AR —4— FIFO AR
_8- 277** PIE RR -%-- FQ-PIERR -#®- FQ-CoDel RR--4-- FIFORR
=
= e —— 88
E 1.5 T
5
T 4]
C
8 .— — e e
B 05| LT — \\\//,.— ———
= 0l N . - - - - - - - - A

20 40 60 80 100 120 140 160 180 200 220 240
RTThase of Competing Flow (ms)
(c) 4/1Mbps case

7

i —— PIE AR —— FQ-PIEAR -®- FQ-CoDel AR —4— FIFO AR

S |+ PERR -x- FQ-PIERR -®- FQ-CoDel RR---- FIFO RR

S 6

2 - ¥ — M= = =X~ = E——— e ——— e — ——F= = =% — ==K

g 47 mo- x-S TR s =IF=

~a”

c

S o4

3 -

s ——
01 &

20 40 60 80 100 120 140 160 180 200 220 240
RTTpase of Competing Flow (ms)
(b) 12/1Mbps case

—— PIEAR
-+- PIERR

—— FQ-PIEAR —®- FQ-CoDel AR—4— FIFO AR
-%-- FQ-PIERR -#- FQ-CoDel RR--4-- FIFORR

o
o

o
N
h

——
-—— ~e
—————

—o ~o —
A—— b —— 4T o p o - A - b - — -k - g — = k- ST T g T =a

Median Rate (Mbps)
o
S

o
L

20 40 60 80 100 120 140 160 180 200 220 240
RTTpase of Competing Flow (ms)
(d) 1.5/0.5Mbps case

Fig. 5: Impact on DASH streams: Median AR and RR for {25/5, 12/1, 4/1, 1.5/0.5}Mbps links; FIFO, PIE FQ-CoDel and
FQ-PIE queue management; R1T},s. applied to competing flows.

FQ-based schemes is noteworthy for DASH streams when
competing with other flows, as the DASH client perceives
a higher and more consistent per-chunk throughput (AR) ,
hence resulting in higher RR being chosen. The flow isolation
in the upstream direction assists the regulation of DASH by
protecting its ACK streams from being incapacitated by the
upstream bulk TCP flow. In all cases, FQ-CoDel and FQ-PIE
delivers better performance than PIE in terms of AR and RR.

The 25/5Mbps case (Figure 5a) sees all AQMs allowing
the selection of the highest RR because of its high bandwidth
capacity. The FlowQueue scheduler allows both FQ-CoDel and
FQ-PIE to ensure DASH having a fair share of bandwidth. FQ-
PIE allows an overall higher AR than FQ-CoDel due to PIE’s
higher burst tolerance, drop probability auto-tuning and drop
derandomisation [4]. Although single-queue PIE has a lower
AR, it is ample to allow DASH client to attain the highest RR.

In the 12/1Mbps scenario (Figure 5b), both FQ-CoDel and
FQ-PIE enable DASH streams to achieve an AR greater than
4Mbps most of the time, hence allowing DASH client to
retrieve the highest RR. Similar to the 25/5Mbps case, FQ-
PIE has a slight edge over FQ-CoDel in terms of AR due to
the same reasons. Although PIE performs better than FIFO, its
AR and RR is much lower than the FQ-based schemes, only
allowing DASH client to retrieve less than 1Mbps RR most
of the time.

In the 4/1Mbps scenario (Figure 5c), the peak downstream
speed is approximately equal to the maximum available RR
in our source material. FQ-CoDel and FQ-PIE again deliver
the best performance, achieving ~1.5Mbps AR, allowing a
consistent retrieval of 1.24Mbps RR across all RTTpqse.
PIE shows improvements when compared to FIFO, delivering
0.5Mbps RR in most cases.

The highly-constrained 1.5/0.5Mbps case in Figure 5d
shows the DASH stream struggling to achieve a fair share of
capacity when using PIE, but achieves ~400Kbps RR through
an FQ-CoDel or FQ-PIE bottleneck. This is particularly sig-

nificant for low bandwidth connections where video streaming
is likely to be unsustainable under traditional FIFO, where the
AR drops below the lowest available RR. However, we see
improvements when using PIE and even better performance
with FQ-CoDel and FQ-PIE.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the performance of low-rate
and high-rate IoT flows in the presence of various concurrent
application flows when traditional FIFO, PIE, FQ-CoDel and
FQ-PIE AQM algorithms are deployed at the home gateway.
Our work evaluates the potential performance of IoT flows in
a home network where common competing traffic flows are
present — UDP-based video call, bursty DASH-based video
streaming and upstream/downstream elastic TCP flows. To
the best of our knowledge, we are the first to experimentally
investigate the impact of FIFO and AQMs on sparse IoT
flows with these traffic combinations in a home broadband
environment.

Our experiment results show that traditional FIFO queuing
discipline, prevalent in current home gateways provides no
throughput and delay protection for the IoT flows. This makes
it inappropriate for real-time and latency-sensitive IoT traffic.
In contrast, IoT flows managed to achieve their target bitrates
with consistently low queuing delays in most cases with
AQMs. PIE provides the benefits of keeping queue size mod-
erately small, while dynamic flow isolation of FQ-CoDel and
FQ-PIE provides enhanced capacity sharing that allows IoT
application flows to functionally coexist with competing flows.
The benefits of flow isolation and FlowQueue scheduling
capabilities of FQ-based schemes are most clearly evident in
mid-range and low bandwidth scenarios. In particular, adaptive
applications that use DASH-like strategies suffer from collat-
eral damage when trying to compete with other cross-traffic
across FIFO but benefit largely from AQMs. We conclude
that an Internet-enabled home blending IoT and non-IoT flows

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2017.2722683, IEEE Internet of

Things Journal

can yield benefits from deploying modern AQM algorithms,
especially FQ-based schemes.

Future work will involve investigating the impact of AQMs
on other QoS requirements (e.g. application layer latency)
of real-time IoT applications, and various embedded devices
which are becoming an integral part of smart homes. En-
hancements to transport protocols for more efficient AQM
interactions to assist IoT flows remain an open research topic.

ACKNOWLEDGEMENTS

This work was enabled in part by financial support for
a project titled “An evaluation of household broadband ser-
vice requirements for educational innovation and Internet of
Things” from the Swinburne University of Technology/Cisco
Australia Innovation Fund Committee (2014 — 2016), and in
part by PhD stipend support from Netflix, Inc.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REFERENCES

S. Kim, J.-Y. Hong, S. Kim, S.-H. Kim, J.-H. Kim, and J. Chun,
“Restful Design and Implementation of Smart Appliances for Smart
Home,” in The 1I1th IEEE Intl Conf on Ubiquitous Intelligence
and Computing, Dec 2014, pp. 717-722. [Online]. Available:
https://doi.org/10.1109/UIC- ATC-ScalCom.2014.64

C. Pereira and A. Aguiar, “Towards Efficient Mobile
M2M Communications: Survey and Open Challenges,” Sensors,
vol. 14, mno. 10, p. 19582, 2014. [Online]. Available:
http://dx.doi.org/10.3390/s141019582

P. Nanda and R. C. Fernandes, “Quality of Service in Telemedicine,” in
The Ist International Conference on the Digital Society (ICDS 2007),
Jan 2007. [Online]. Available: https://doi.org/10.1109/1CDS.2007.35

R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Internet Engineering Task Force,
Feb. 2017. [Online]. Available: https://tools.ietf.org/html/rfc8033

D. K. M. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” Internet Engineering Task Force,
Internet-Draft draft-ietf-agm-codel-07, Mar. 2017, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-agm-codel-07
D. Taht, T. Hoeiland-Joergensen, P. McKenney, J. Gettys, and E. Du-
mazet, “The FlowQueue-CoDel Packet Scheduler and Active Queue
Management Algorithm,” Internet Engineering Task Force, Internet-
Draft draft-ietf-agm-fq-codel-06, Mar. 2016, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06

T. Hoeiland-Joergensen, P. Hurtig, and A. Brunstrom, “The Good,
the Bad and the WiFi: Modern AQMs in a residential setting,”
Computer Networks, vol. 89, pp. 90 — 106, 2015. [Online]. Available:
https://doi.org/10.1016/j.comnet.2015.07.014

S. Zander and G. Armitage, “TEACUP v1.0 - A System for
Automated TCP Testbed Experiments,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 150529A, 29 May 2015. [Online]. Available:
http://caia.swin.edu.au/reports/150210A/CAIA-TR-150210A.pdf

T. D. P. Mendes, R. Godina, E. M. G. Rodrigues, J. C. O. Matias,
and J. P. S. Catalao, “Smart Home Communication Technologies and
Applications: Wireless Protocol Assessment for Home Area Network
Resources,” Energies, vol. 8, no. 7, pp. 7279-7311, 2015. [Online].
Available: http://dx.doi.org/10.3390/en8077279

B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester,
“A survey on wireless body area networks,” Wireless Networks,
vol. 17, no. 1, pp. 1-18, Nov 2010. [Online]. Available: https:
//doi.org/10.1007/s11276-010-0252-4

E. Kartsakli, A. S. Lalos, A. Antonopoulos, S. Tennina, M. D. Renzo,
L. Alonso, and C. Verikoukis, “A survey on M2M systems for mHealth:
a wireless communications perspective.” Sensors (Basel, Switzerland),
vol. 14, no. 10, pp. 18009-18052, Jan 2014. [Online]. Available:
http://dx.doi.org/10.3390/s141018009

L. Skorin-Kapov and M. Matijasevic, “Analysis of QoS Requirements
for e-Health Services and Mapping to Evolved Packet System QoS
Classes,” Int. J. Telemedicine Appl., vol. 2010, pp. 9:1-9:18, Jan 2010.
[Online]. Available: https://doi.org/10.1155/2010/628086

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

M. Patel and J. Wang, “Applications, challenges, and prospective
in emerging body area networking technologies,” IEEE Wireless
Communications, vol. 17, no. 1, pp. 80-88, Feb 2010. [Online].
Available: https://doi.org/10.1109/MWC.2010.5416354

“NVR Camera Capacity based on Bit Rate,” Hikvision, Aug 2012. [On-
line]. Available: http://oversea-download.hikvision.com/uploadfile/doc/
NVR%20Camera%20Capacity %20based%200n%20Bit%20Rate.pdf
“ISO/IEC 23009-1:2014 Information technology — Dynamic adaptive
streaming over HTTP (DASH) - Part 1: Media presentation
description and segment formats,” ISO/IEC, May 2014. [Online].
Available: http://www.iso.org/iso/home/store/catalogue_ics/catalogue_
detail_ics.htm?csnumber=65274

T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proceedings of the Second Annual
ACM Conference on Multimedia Systems, ser. MMSys ’11. New
York, NY, USA: ACM, 2011, pp. 133-144. [Online]. Available:
https://doi.org/10.1145/1943552.1943572

J. Kua, G. Armitage, and P. Branch, “A Survey of Rate Adaptation
Techniques for Dynamic Adaptive Streaming over HTTP,” [EEE
Communications Surveys Tutorials, 2017, in press. [Online]. Available:
https://doi.org/10.1109/COMST.2017.2685630

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang,
“Recommendations on Queue Management and Congestion Avoidance
in the Internet,” RFC 2309 (Informational), IETF, Apr 1998. [Online].
Available: https://tools.ietf.org/html/rfc2309

F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active
Queue Management,” RFC 7567 (Best Current Practice), IETF, Jul
2015. [Online]. Available: https://tools.ietf.org/html/rfc7567

J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Queue, vol. 9, no. 11, pp. 40:40—40:54, Nov 2011. [Online]. Available:
https://doi.org/10.1145/2063166.2071893

R. Al-Saadi and G. Armitage, “Dummynet AQM v0.2
— CoDel, FQ-CoDel, PIE and FQ-PIE for FreeBSD’s
ipfw/dummynet framework,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,

Australia, Tech. Rep. 160418A, 18 April 2016. [Online]. Available:
http://caia.swin.edu.au/reports/1604 18 A/CAIA-TR- 160418 A.pdf

J. Nagle, “Congestion Control in IP/TCP Internetworks,” Legacy RFC
896, Jan 1984. [Online]. Available: https://tools.ietf.org/html/rfc896

J. Misic and V. Misic, “Bridging between IEEE 802.15.4 and IEEE
802.11b networks for multiparameter healthcare sensing,” IEEE Journal
on Selected Areas in Communications, no. 4, pp. 435-449, May.
[Online]. Available: https://doi.org/10.1109/JSAC.2009.090508
“FreshPorts — benchmarks/nttcp,” accessed 13th March, 2017. [Online].
Available: http://www.freshports.org/benchmarks/nttcp
“Iperf,” accessed 13th March, 2017. [Online].
/Isourceforge.net/projects/iperf2/

“dash.js: Dash industry forum reference client,” accessed 13th March,
2017. [Online]. Available: https://github.com/Dash-Industry-Forum/
dash.js/wiki

S. Lederer, C. Miiller, and C. Timmerer, “Dynamic Adaptive Streaming
over HTTP Dataset,” in Proceedings of the 3rd Multimedia Systems
Conference, ser. MMSys ’12. New York, NY, USA: ACM, 2012, pp.
89-94. [Online]. Available: https://doi.org/10.1145/2155555.2155570
“Lighttpd — fly light,” accessed 13th March, 2017. [Online]. Available:
http://www.lighttpd.net/

“Netflix openconnect appliance software,” accessed 13th March, 2017.
[Online]. Available: https://openconnect.netflix.com/software/

R. Pan, P. Natarajan, F. Baker, B. VerSteeg, M. Prabhu, C. Piglione,
V. Subramanian, and G. White, “PIE: A Lightweight Control Scheme
To Address the Bufferbloat Problem,” IETF Draft, Oct 2014. [Online].
Available: https://tools.ietf.org/html/draft-ietf-agm-pie-00

S. Zander and G. Armitage, “Minimally-Intrusive Frequent Round
Trip Time Measurements Using Synthetic Packet Pairs,” in The
38th IEEE Conference on Local Computer Networks (LCN 2013).
IEEE, Oct 2013, pp. 264 — 267. [Online]. Available: https:
//doi.org/10.1109/LCN.2013.6761245

“TCPDUMP & LIBPCAP public repository,” accessed 13th March,
2017. [Online]. Available: http://www.tcpdump.org/

Available: https:

https://doi.org/10.1109/UIC-ATC-ScalCom.2014.64
http://dx.doi.org/10.3390/s141019582
https://doi.org/10.1109/ICDS.2007.35
https://tools.ietf.org/html/rfc8033
https://tools.ietf.org/html/draft-ietf-aqm-codel-07
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-06
https://doi.org/10.1016/j.comnet.2015.07.014
http://caia.swin.edu.au/reports/150210A/CAIA-TR-150210A.pdf
http://dx.doi.org/10.3390/en8077279
https://doi.org/10.1007/s11276-010-0252-4
https://doi.org/10.1007/s11276-010-0252-4
http://dx.doi.org/10.3390/s141018009
https://doi.org/10.1155/2010/628086
https://doi.org/10.1109/MWC.2010.5416354
http://oversea-download.hikvision.com/uploadfile/doc/NVR%20Camera%20Capacity%20based%20on%20Bit%20Rate.pdf
http://oversea-download.hikvision.com/uploadfile/doc/NVR%20Camera%20Capacity%20based%20on%20Bit%20Rate.pdf
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=65274
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=65274
https://doi.org/10.1145/1943552.1943572
https://doi.org/10.1109/COMST.2017.2685630
https://tools.ietf.org/html/rfc2309
https://tools.ietf.org/html/rfc7567
https://doi.org/10.1145/2063166.2071893
http://caia.swin.edu.au/reports/160418A/CAIA-TR-160418A.pdf
https://tools.ietf.org/html/rfc896
https://doi.org/10.1109/JSAC.2009.090508
http://www.freshports.org/benchmarks/nttcp
https://sourceforge.net/projects/iperf2/
https://sourceforge.net/projects/iperf2/
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://doi.org/10.1145/2155555.2155570
http://www.lighttpd.net/
https://openconnect.netflix.com/software/
https://tools.ietf.org/html/draft-ietf-aqm-pie-00
https://doi.org/10.1109/LCN.2013.6761245
https://doi.org/10.1109/LCN.2013.6761245
http://www.tcpdump.org/

