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Abstract— Important statistical characteristics of traffic can
be examined via the reconstruction of a so-called phase-space
where each point in that space represents a state of traffic
and vice versa. Statistical tools such as recurrence analysis
can then be used to visualize the temporal evolution of traffic
and to assess its non-stationarity structure as an indicator
for irregular behaviour. In this paper we investigate, examine
and analyze the short-term non-stationary features present in
traffic flows based on the historical data available from stop-
line detector s collected from a small number of intersectionsin
the Melbourne CBD, Australia and demonstrate that recurrence
analysis has consider able potential in identifying changes within
the temporal behaviour of traffic.

. INTRODUCTION

Analyzing data collected from road traffic networks can
reveal valuable insights that can be used to manage and
control that network. Recent studies [15], [16] pointed out
that the process underlying traffic is indeed very complex
and its analysis requires better methods as an aternative
to the well known and often used linear e.g. [3] and non-
linear time series analyses e.g. [14]. Statistical tools such
as recurrence analysis [7] offer a new way to characterize
the behaviour of a dynamical complex system. It is based
on the observation that in many systems, similar situations
often evolve similarly (i.e. determinism property) and certain
events are repeated (the re-occurrences of the system former
state). Utilizing these, the recurrence analysis starts with a
process of constructing multi-dimensional embedded vector
space (phase space) from a scalar traffic data measurement
such as traffic volume. It then compares the states of the
system (i.e. looking for recurrent state or similarity) by cal-
culating the distance between all pairs of embedded vectors
and assessing it against a predefined threshold.

In this paper we will use recurrence analysis to analyze
one year worth of traffic data collected from a small number
of intersections in the Melbourne CBD, Australia. The data
is loop detector data that has been collected by the Sydney
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Coordinated Adaptive Traffic System (SCATS) which con-
trols traffic signals at intersections around Melbourne. The
analysis is part of a larger project in the development of
predictive methods which can better model traffic flow and
improve road system capacity via more efficient controlling
of traffic signalization. Herein we will report preliminary re-
sults obtained from the recurrence analysis and demonstrate
that this method has considerable potential in identifying
changes within the temporal behaviour of traffic.

There has been much work in the literature dealing with
traffic analysis based on SCATS or similar data representing
typical traffic variables such as volume, lane occupancy
and speed. In particular, Nguyen and Gaffney discusses the
ARTIS system which identifies congestion and estimates
travel times using an unspecified agorithm, based on urban
signalized arterials in Melbourne, Australia [11]. Suksri et
al. introduces anaysis of SCATS data from the Adelaide
CBD signalized intersections using spectral density functions
(SPF) and autocorrelation function (ACF) plots, alowing
them to differentiate the data characteristics and lane config-
urations from the data set [12]. Vlahogianni et a. proposes
a multilayer strategy to identify patterns of traffic based on
their structure and evolution in time using both volume and
occupancy. The authors use measures in the Cross Recur-
rence Quantification Analysis (CRQA) as inputs to a Self
Organizing Map to reduce the multi-dimensional data to a
two-dimensional mapping which then can be clustered using
a k-means algorithm with traffic flows on a urban signalized
arterial in Athens, Greece [15]. VIahogianni then builds upon
this to make short-term predictions based on the patterns
identified for each regime of traffic flow independently by
using multilayer feed-forward neural networks (MLP) [16].
Masugi uses a similar approach of CRQA with the non-
stationary time-signals of 1P-Network Traffic, also including
Detrended Fluctuation Analysis (DFA) to analyze the Long-
Range Dependence (LRD) to overall asses the dynamical
transitions over time [9], [10].

The paper is structured as follows. In section 11 we begin
with brief summary of relevant road traffic theory and give
an overview of data provided by the Sydney Coordinated
Adaptive Traffic System (SCATS). Section Ill provides a
formal description of recurrence plot and recurrence analysis
with measures to be used later in our study. In Section 1V
we present and discuss our results and observations. Finally,
the conclusion is given in Section V.



Il. URBAN TRAFFIC OPERATIONS AND SCATS DATA
A. Traffic Theory

Road traffic is typically understood in terms of different
phases where each phase has its own behavioural characteris-
tics. The classical theory of traffic flow assumes two phases:
free flow and congested flow. Kerner et a. [6] extend this
classical theory by replacing congested flow with two phases
of congestion: synchronized flow and wide moving jam. In
this paper we adopt the classical theory but note the existence
of a transition zone between the phases.

The fundamental mathematical relationship that describes
traffic flow is that volume (sometimes "flow”) is the product
of density and mean speed. Volume is the number of vehicles
per unit time passing a given point on the road, usually
expressed as vehicles per hour (veh/h). Density is the number
of vehicles per kilometer (veh/km).
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Fig. 1. Typica Volume-Density relationship of uninterrupted flow [1, Fig.

2.3], modified to include flow annotations.

The relationship between volume and density can be
described by a Volume Density diagram (or fundamental
diagram) as shown in Fig. 1. "Free flow’ traffic condition
is characterized by a strong positive correlation between
Volume and Density up to the point of maximum volume
and critical density. In this phase individual vehicles suffer
little restriction from the presence of other traffic. As the
density increases traffic enters 'bound’ or 'transitiona’ flow
as vehicle speed is bound by that of vehicles around it. This
phase is characterized by unstable flow conditions. Beyond
the critical density traffic enters *forced flow’ conditions in
which the speed of the traffic decreases until the traffic is
stationary ('jam’).

In experimental observations of a single lane or detector,
typically the volume-density plot is more triangular in shape,
due to smaller amount of data available as well as speed
limitations restricting road users from travelling faster than
the speed limit posted for that road [4], [1, pp. 65 - 66].

B. SCATS

The Sydney Coordinated Adaptive Traffic System
(SCATY) is an adaptive traffic signal control system used in
Melbourne by VicRoads to manage signalized intersections
in the Melbourne road network. Vehicle loop detectors are
installed at intersections which provide SCATS with traffic

count and occupancy data. The former is essentially avehicle
count during a green time for each traffic movement, while
the latter is the portion of time when vehicles are within the
sensor zone of the loop detectors.

SCATS data consists of a sequence of records, each is
produced every cycle and includes:

o Site identifier,
Lane number and detector identifiers,
Maximum hourly flow,
Location,
Traffic movements possible from lane,

o Sampling date and time (to nearest minute),

o Cycle time in seconds,

o Green (Phase) time in seconds,

o Number of carsthat passed the detector during the cycle

(Vo)
o Degree of saturation (D.S) defined below,
« Estimated traffic count or reconstituted volume (V K)
defined below.

The DS is a percentage measure of the utilization of the

carrying capacity of the lane. It is defined as:

GT — Syt +nSmr
T %o D
where GT' is the green time in seconds, S,.: is the total
space time in that period, S, is the maximum flow and n
is the number of vehicle spaces counted.
The estimated traffic count (or reconstituted volume) is a
measure of the estimated traffic flow having the same DS
under free flow conditions. It is defined as:

VK =GT x DS x MF. 2

The Maximum Hourly Flow (M F)) is calculated per lane,
daily as the moving average of the daily Maximum Volume
taken over one week. Within SCATS the DS, VK and VO
values can be used to indicate congestion whenever they
fulfill the following conditions: VK/VO exceeds 2.4 and
DS exceeds 0.95.

DS =

I1l. METHODS

Recurrence plots and Cross Recurrence plots are visual,
non-linear analysis techniques based on two fundamental
aspects of time-dependent systems:

1) similar situations often evolve in a similar way,

2) some situations recur [7].

The method of Recurrence Plots, introduced by Eckmann
et a. [2], visualizes the recurrences of dynamical systemsin
a phase space trgjectory by considering a series of vectorsin
an abstract mathematical space, and plotting at which points
in time they recur (approximately) to a previous state.

Extending the recurrence plot to bi-variate case is the
Cross Recurrence Plot, allowing analysis of dependencies be-
tween two different systems[17], [8], [7]. The corresponding
Cross recurrence matrix of two dynamical systems, each one
represented by the trgjectories ©; and 1, is defined by

CR V=0 —||&; —5;l), i=1,....N, j=1,....M
©)
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where N isthe number of measured points £,  isathreshold
distance, ©(-) the Heaviside function and || - || is a norm
(typically the Euclidian norm) [7].

Selection of the threshold parameter of the recurrence plot
(¢) is crucia, and must be chosen appropriately. When the
threshold is too small, there will be an inadequate number
of recurrence points, leading to insufficient information for
learning anything about the recurring structure of the un-
derlying system. However if the threshold is chosen to be
too large, aimost every point on the phase-space trajectory
is similar to every other, leading to meaningless artefact
on the plot. Tangential motion, which causes thicker and
longer diagonal structures in the recurrence plot than they
should be, are caused by consecutive points on the trgjectory
being considered as neighbours due to alarge threshold. The
influence of noise however may suggest choosing a larger
threshold to preserve the structure of the Recurrence Plot, as
otherwise noise may distort any existing structure. Therefore,
the threshold must be a carefully selected compromise taking
these items into account [7].

The multi-dimensional trgjectories of a dynamical system
are often not known and cannot be directly observed. Instead
only a time-discrete measurement of a single observable
parameter is available. In this case, the phase-space must
be reconstructed in order to analyze the time series by the
recurrence plot method.

A frequently used method of phase-space reconstruction
is the time delay method of embedding,

m

f; = Zuw(jfl)re_} 4
j=1

where m is the embedding dimension, 7 is the time delay
and w4 (j—1)- ae the sample points. The vectors ¢; are
unit vectors and span an orthogonal coordinate system. [7].
Both of these parameters must be chosen appropriately, the
false nearest-neighbours algorithm [5] provides a reasonable
estimation of the smallest sufficient embedding dimension.

The phase-space trgjectory, as made up of vectors of
arbitrary dimension, allows for the use of multiple vari-
ables in the analysis either as separate components or by
concatenating the vectors of multiple time-delay embedded
trgjectories.

A. Recurrence Quantification Analysis

Recurrence Quantification Analysis (RQA) and Cross
Recurrence Quantification Anaysis (CRQA) quantify
the small-scale structures in Recurrence Plots and Cross
Recurrence Plots respectively. Note that Recurrence Plots
will have a diagonal Line of Identity (LOI) where the same
states are compared and found to be recurrent, hence is
excluded from the measures below.

RR  Recurrence Rate (rr) is the simplest measure of
RQA and is a measure of the density of recurrence
points in the plot [7]

1 N
rr = m Z Ri,j~ (5)

ij=1

DET Determinism (DET) is the ratio between recurrence
points forming diagonal lines greater than the min-
imum length ( 1,,,; ) with the number of recurrent
points in total.

N
-, 1P(l
DET = 721—;”% ) (6)
2= 1P
where P(l) is the histogram of diagonal lines of
length [ [7]:
N -1
P(l) = (1=Riz1;-0)(1=Risijr) [ Rosrgwne D
i,j=1 k=0

In the above equation R; ; is the distance between
samples ¢ and j. As processes with uncorrelated
or weakly correlated, stochastic or chaotic (i.e.
random) behaviour cause none or very short
diagonals and deterministic processes cause longer
diagonals and less single, isolated recurrence
points, DET is a measure of the determinism
of the system. The threshold i,,;, excludes the
diagonal lines which are formed by the tangential
motion of the phase space trajectory [7].

The DET measure based on diagonal lines alows for the
chaos-order transitions to be identified [7], [13] and will be
utilized in the next section.

IV. RESULTS AND DISCUSSION
A. Data

As mentioned earlier SCATS utilizes inductive loop de-
tectors at the stop line of intersections to collect data, such
as traffic count, maximum traffic flow and the corresponding
vehicle occupancy, in order to detect changes of the traffic
and to adjust the signal timings appropriately. For this reason
the availability and accuracy of SCATS data depend on
the reliability of the loop detectors and their robustness in
terms of detecting vehicles at intersections. For example
the detector might under-count traffic by performing only
a single count for a possible platoon of vehicles where the
gap between them is shorter than the detector |oop length of
4.5m.

Our initial study into the available SCATS data for Mel-
bourne indicates that the data appears to be limited in terms
of the number of intersections and lane detectors available,
and contains spurious (green) phase time information. This
can cause large spikes in vehicle volume [veh/h] defined as
the traffic count (VO) divided by the corresponding phase
time that was abnormally short. To this end, only data at



intersections with few to none abnormalities is studied, and
data is filtered to remove any unreadlistically high volumes
in the traffic count. It should also be noted that stop line
detectors by their very nature cannot differentiate turning
traffic from through traffic and that recorded counts may be
artificially decreased when vehicles must wait for turning
traffic ahead of them. Likewise, outermost lanes can exhibit
abnormal traffic flows due to stopped traffic, and other
miscellaneous reasons.

In particular, a route along Flinders St, a major thorough-
fare within the Melbourne CBD, is considered, focusing
on the Westbound stop-line detectors of the Exhibition St
(Site 4560) and Swanston St (Site 4562) intersections, as
indicated in Fig. 2. The layout of the Flinders and Exhibition
intersection is shown in Fig. 3 where data from the through
lane on the Flinders St (Detector 7) is of interest.

Fig. 2. Extract of the Melbourne CBD from Google map with studied
intersections highlighted.

Fig. 3. Layout of an intersection (Site 4560) at Flinders St and Exhibition
St

The volume (calculated as VO/(phase time) [veh/h]), the
degree of saturation (DS) [%)] and congestion indicator as
defined in Section 11-B are plotted for the above two intersec-
tionsin (Fig. 4) where the data points were collected on the
thru lane and smoothed using a moving average. Although
small time scales cannot be considered when smoothed, it

provides valuable insight in regard to the daily trend. Near
the location of congestion (indicated by green bars), the
volume decreased while the DS increased which is expected
from the fundamental diagram in the area of congested or
forced flow.

A: Site 4560

B:Site 4562

Fig. 4. Smoothed Time Series Plots of normalized parameters from through
lane vehicle detectors on Flinders St, 12th July 2012.

Figure 5 shows the resulting graph from the samples
of volume (i.e. VO/(phase time) [veh/h]) and DS over a
single day for a single detector in one of the considered
intersections. The graph reassembles the shape of a typical
volume-density fundamental diagram where the volume is
plotted against the DS instead of density.

FInders St/Exhbibn St, W estbound

2000 -

500 -

Degree of Saturtion (%)

“Stable” “Unstable”

Fig. 5. Volume vs. DS Plot of Detector 7, Site 4560.

Note that the triangular shape of volume-density funda-
mental diagram is typical for a single lane/detector over a 24
hour period as described in 11-A. The nature of the volume
reaching maximum flow at the point where DS reaches 100%
and decreasing thereafter suggests that the DS of greater than
100% being a reasonable indicator of congestion and over-
saturation in traffic.



B. Recurrence Plot Analysis

In the following the results obtained by recurrence plot
(RP) analysis of traffic at both particular times of day and
over the whole day is described. The SCATS data of 15
intersections along the Victoria Street and Victoria Parade
in Melbourne is analyzed for both west (inbound) and east
(outbound) traffic flows as shown in Fig. 2 (route A-B on
the map). The detectors chosen at each intersection were, as
far as possible, on straight-through (typically non-turning)
lanes. Traffic volume is interpolated and re-sampled at 90
second intervals. All subsequent processing uses this re-
sampled data. The DET measure is calculated from each
day’s time series in a set of adjacent, non-overlapping 1-
hour (40 samples) windows.

The RP measures calculated from the data for each
selected intersection and selected day of the week were
averaged over one year (i.e. over 52 weeks). A phase
space trgjectory was reconstructed from each 1-dimensiona
time series signal by using time-delay embedding with an
embedding dimension of m = 5 based on the false nearest
neighbour algorithm, and a fixed time delay of = = 1 to
ensure no data points are skipped. Two methods of displaying
the averaged data are used:

« Averaged traffic volume and DET measures are plotted
on the same axes, the volume sampled at 90 second
intervals and the DET sampled hourly.

o The DS vs. VO/VK plane is segmented into a 32 x 40
grid and the average DET in each cell over one year's
data for each selected week day and intersection.

The calculations and plots in this report utilized the
Matlab toolbox, crptoolbox, using the methods presented
by Marwan [7] and available online at http://tocsy.
pik-potsdam.de/CRPtoolbox/.

Tuesday

VO / VK (4406)

Fig. 7.
measure.

Average DET values are plotted against the congestion indicator

It can be seen in Fig. 6 that the DET value is high during
more congested conditions suggesting that the traffic is less
random in those periods. The same can be said in very

Tuesday :4389, 4403, 4406, 4441, 4455

Fig. 8. CRQA measures, average DET values and recurrence rate (rr),
plotted through the day for particular days of the week.

uncongested conditions where cars are moving in a free-
flow pattern. Note that although the traffic volume are very
similar, the DET valueis higher for inbound traffic compared
to that of outbound at the same intersection. This is likely
due to the fact that the inbound traffic is terminated at the
CBD and traffic is more predictable given the same condition
compared to the outbound flow. It is aso interesting to
note that for inbound traffic, the Monday traffic exhibits a
very different characteristic compared to that of the rest of
the week (represented by the Tuesday traffic. In particular,
Monday traffic seemed to be more random between the
morning and afternoon peaks, whilst it is less random on
the other days. The traffic at the weekend is again different
with only one peak at about late morning as expected where
thereis a high level of determinism of traffic during the peak
time.

In Fig. 7 there are similar observations where the average
DET values are high in the region of low traffic (to the left
of Fig. 7) or congestion (far right bottom of Fig. 7). It is
interesting to note a triangular shape beyond the point where
the DS is 100% which may represent the transient state (i.e.
non-stationarity) of traffic at the beginning of the congestion
forming process.

Finaly, the CRQA measures (DET and rr) are plotted
based on five intersections averaged over one year for
inbound traffic in Fig. 8. The patterns observed in the
time delay embedded data also appear in this spatia data
(i.e. over a set of intersections), but require much larger
neighbourhoods to get a reasonable level of recurrence. Here
the DET and rr measures are calculated using the individual
volumes for the five intersections as the components of the
phase space vector at each sampled instant, while the volume
is an Euclidean norm of the 5-intersection volume vector
divided by the square root of 5. Given that a pure noise
signal with comparable setting for neighbourhood radius (as
a fraction of mean separation) would be expected to have
an rr of about 0.002; most of the studied data have the rr
values at least 4 times as large, and frequently 10 times the
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Fig. 6. Volume and Determinism measure (DET) of in-bound and out-bound traffic at an intersection (Site 4406), averaged over a year, are plotted through

the day for particular days of the week.

noise level, which is a modest but encouraging margin as
shown in Fig. 8.

V. CONCLUSION

In this paper the short-term non-stationary features present
in traffic flows based on the historical data available from
stop-line detectors were investigated. It was shown that
recurrence plot and recurrence quantification analysis can
be used to identify non-stationary features of the traffic
that otherwise could not be detected based on time series
visualization. It was observed that periods of low traffic flow
in the early morning are highly deterministic, as are the peak
time periods, but the rest of the day are much more random.
We aso discovered that inbound traffic has a higher level of
determinism as a result of the fact that most of the traffic is
terminated in the city CBD.
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