Information-based adaptive routing: Path v.s Policy

Nam Hong Hoang
Supervised by: Prof. Hai Vu & Dr. Manoj Panda

hhoang@swin.edu.au

Intelligent Transport Systems Lab (ITSL)
Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology

Information in ITS

CAIA Seminar
http://www.swin.edu.au hhoang@swin.edu.au November 19, 2015 3
The actors

- **Travelers**
 - Request information: ‘best’ routes ...
 - Form information: as a part of traffic
 - Generate new information: make incidents ...
 - Source of information (V2V)

- **Information providers**
 - Process (uncertain) information of traffic states
 - Provide consistent information, used and adjusted by travelers

- **Network operators**

The dual problems (for operators)

- **Given network and demand, find the optimal strategies to manage traffic**
- **Given traffic characteristics and demand, design the optimal network (settings, topology)**

Other problem: Capacity design

- **Maximize demand given traffic characteristics and network infrastructures**

Multiple dimensions (time and space): static and dynamic, deterministic and stochastic

Adaptive routing with information to reduce uncertainty

Require an analysis or simulation method to find solutions
The existing DTA framework

- DTA: Dynamic Traffic Assignment
- In general, DTA models are non-linear
 - Non-holding-back, FIFO
- Solution methods: Heuristics, Fixed-point algorithms, etc.

Traffic model: Cell Transmission Model [1]

- A link is divided into segments or cells
- Dynamic description of road segments, caused by incidents
- Spatial distribution of traffic within each cell is averaged

\[\text{Max flow} \ Q \]

\[\text{density} \]

\[\text{flow} \]
The proposed analysis framework

Traffic Model (TM)

Choice Model (CM)

Information Model (IM)

DTA with Information framework

Perfect + Complete

Policy choice

Path choice

Novel contribution:
- Information model
- **LINEAR** approach to the whole framework

Policy choice v.s path choice

- **Policy choice**: Choosing a next link or cell to move on
 - Temporal-spatial adaptation
- **Path choice**: Choosing a path to move on
 - Temporal adaptation
The model settings

- Traffic model: Cell Transmission Model
- Information model: perfect (no error/noise) and complete
- Routing: policy and path choice

Optimization model:

Objective: Minimize the total travel time
Constraints: CTM constraints
Path/Policy choice constraints

An example

Demand: 480 veh (R to S), all starting at time 1.

<table>
<thead>
<tr>
<th>Scenarios for cells 2 and 5</th>
<th>Max flow</th>
<th>Time period</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_0)</td>
<td>16 veh/time unit</td>
<td>ALL</td>
</tr>
<tr>
<td>(S_1)</td>
<td>8 veh/time unit</td>
<td>8 → 13</td>
</tr>
<tr>
<td>(S_2)</td>
<td>8 veh/time unit</td>
<td>8 → 17</td>
</tr>
</tbody>
</table>

Travelers are able to acknowledge \(S_0 \) after time 8.
Travelers are able to acknowledge \(S_1 \) or \(S_2 \) after time 14.
Scenario s_0:

![Graph of Scenario s_0 showing traffic flow over time for paths 0, 1, and 2.](image)

Path:

![Path diagram for Scenario s_0.](image)

Policy:

![Policy diagram for Scenario s_0.](image)

Scenario s_1, s_2:

![Graph showing traffic flow for Scenario s_1, s_2.](image)

Path:

![Path diagram for Scenario s_1, s_2.](image)

Policy:

![Policy diagram for Scenario s_1, s_2.](image)
Nguyen-Dupuis network [2]

PoSCTM: $O((C + A)^XTC_S)$
PaSCTM: $O((C + A)^XTP)$

Path Policy = $\frac{P}{C_S} = \frac{\text{Number of paths}}{\text{Number of destinations}}$
Computational performance

Complexity (constraints, variables)

![Graph showing complexity (constraints, variables)](image)

Computational performance

Execution time

![Graph showing execution time](image)
Summary

- Policy-based routing is better than path-based routing
 - Performance
 - Objective value
- BUT, ...
 - Psychological issue: stressful
 - Driver-less car
 - Imperfect and incomplete information
- What is next?

References I
