

SWINBURNE UNIVERSITY OF TECHNOLOGY

Capturing Ghosts: Predicting the Used IPv4 Space by Inferring Unobserved Addresses

<u>Sebastian Zander</u>¹, Lachlan Andrew², Grenville Armitage¹

¹Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology

²Faculty of IT, Monash University

Slides as presented at IMC 2014

IPv4 Address Space Exhausted

- More than 96% of IPv4 space allocated
- RIRs, except AfriNIC, down to less than /8 prefix
- Rationing is prolonging life of remaining pools

But Allocated is not Actively Used

- How many unused IPv4 "reserves" ?
- Why care about actively used ?
 - Track progressive IPv4 exhaustion
 - Predict size and costs of IPv4 market
 - Assist planning for IPv6 transition

Main Challenges

6 November 2014 3

- Previous research focused mainly on active probing, but many hosts do not respond to active probing
- Passive measurements capture only parts

Combine many sources and estimate unseen (ghosts)

Capture-Recapture (CR) Method

- Multiple samples over time or multiple data sources
- General assumptions
 - \blacksquare Individuals can be matched between sources \rightarrow YES
 - Non-zero chance of sampling any individual
 - 25% of IPv4 space not publicly routed \rightarrow excluded
 - Hidden specialized devices (e.g. printers) \rightarrow downward bias
- Simplest method: two-sample Lincoln-Petersen (L-P)
 - Too restrictive assumptions but good for illustration of idea
- Method we use: Log-linear models (LLMs)

SWIN BUR BUR • NE •	IMC 2014	http://caia.swin.edu.au	szander@swin.edu.au	6 November 2014	7
---------------------------	----------	-------------------------	---------------------	-----------------	---

Log-linear Models (LLMs)

Illustrate LLMs with 3 data sources

Log-linear Models (LLMs)

• System of
$$2^3 - 1 = 7$$
 equations
 $\log(E(Z_{ijk})) = u + u_1 \mathbf{1}_{i=1} + u_2 \mathbf{1}_{j=1} + u_3 \mathbf{1}_{k=1} + u_{12} \mathbf{1}_{i=1^{i}=1} + u_{13} \mathbf{1}_{i=1^{k}=1} + u_{23} \mathbf{1}_{j=1^{k}=1} + u_{123} \mathbf{1}_{i=1^{k}=1} + u_{12} \mathbf{1}_$

- Parameters u model dependencies
- Maximum-likelihood estimation of u
- Model selection process selects u to use
 - Select least complex model with "adequate" fit

http://caia.swin.edu.au

• Estimate Z_{000} : $\widehat{Z}_{000} = \exp(u)$

IMC 2014

Log-linear Models (LLMs)

6 November 2014 13

- System of $2^3 1 = 7$ equations $\log(E(Z_{ijk})) = u + u_1 \mathbf{1}_{i=1} + u_2 \mathbf{1}_{j=1} + u_3 \mathbf{1}_{k=1} + u_{12} \mathbf{1}_{i=1^{j}=1} + u_{13} \mathbf{1}_{i=1^{k}=1} + u_{23} \mathbf{1}_{j=1^{k}=1} + u_{123} \mathbf{1}_{i=1^{k}=1^{k}=1} + u_{123} \mathbf{1}_{i=1^{k}=1^{k}=1^{k}}$
- Parameters u model dependencies
- Maximum-likelihood estimation of u
- Model selection process selects u to use
 - Select least complex model with "adequate" fit
- Estimate Z_{000} : $\widehat{Z}_{000} = \exp(u)$

szander@swin.edu.au

Collected IPv4s (Jan 2011 – Jun 2014)

Dataset	Description	Unique IPs 2013 [M]
IPING	ICMP Internet census	411
CALT	Caltech NetFlow data	356
GAME	Steam game server logs	confidential
SWIN	Swinburne NetFlow data	113
WEB	Web clients tested for IPv6	109
TPING	TCP port 80 Internet census	93
MLAB	Clients measurement lab	22
SPAM	Spam database	18
WIKI	Wikipedia page edit history	7

http://caia.swin.edu.au

szander@swin.edu.au

6 November 2014 16

IMC 2014

Dataset Pre-Processing

- Internet census (IPING, TPING)
 - Include only probed IPs that responded with ICMP echo replies or SYN/ACKs
 - Include router IPs that sent ICMP errors
- Passive datasets
 - Filter out private, multicast, unrouted addresses
 - Filter out spoofed unused addresses (NetFlow datasets)
- Use 12-month time windows starting every 3 months
- Analyse unique IP addresses, unique /24 subnets used

How Well Does Approach Work?

■ For /24 subnets we have really high overlap

Results

- Used IPv4 addresses and /24 networks
 - Overall
 - Depending on regions / RIRs
 - Depending on allocation age
 - Depending on allocation size
 - Depending on allocation country
- Remaining unused prefixes distribution

Future Work

- More ground truth validation
- Estimate IPv6 space usage

IMC 2014

- More data sources
 - Looking for collaborators
 - Developed secure scheme ensuring data anonymity

szander@swin.edu.au

Summary

6 November 2014 29

 Log-linear capture-recapture approach shows promising results for estimating used IPv4 space

http://caia.swin.edu.au

- Estimated used IPs well over observed or pingable IPs, but observed /24 subnets close to estimated /24 subnets
- 1.2G IPv4 addresses used (45% publicly routed space)
- 6.2M /24 subnets used (60% publicly routed space)
- Significant unused IPv4 space (especially legacy blocks)
 - IPv4 address market, if regulators permit
 - Slower transition to IPv6

Supported by Australian Research Council grants LP110100240 (with APNIC Pty Ltd) and FT0991594. http://caia.swin.edu.au szander@swin.edu.au 6 November 2014 30