The NBN Experience: The Interwebs at the Speed of Light

Jason But

jbut@swin.edu.au

Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology

Outline

• NBN Nuts and Bolts
• What happens during an install
• The User experience – what happens after an install
NBN – Big Picture View

- 121 Points of Interconnect – where ISPs connect to the NBN
- Feed out to the FANs – Active nodes which service a local area (likely an exchange)
- FANs feed multiple loop networks with multiple Hubs/loop
- Each Hub feeds a set of end-users
THE INSTALLATION EXPERIENCE
Before the Local Install

NBN External Patch Enclosure
Fibre run Inside House

Comms Cupboard Prior to Works
Patch Lead Pulled Through

Cleaning the Fibre Tail
Attaching the Connector, no splicing here

Connecting the Internal Patch Lead
Job Complete

External works completed
NBN Network Termination Unit

NTU Installed, now for the UPS
All installed, covers removed

The finished install
THE USER EXPERIENCE

Home Configuration

- NBN Connected to a Linux Server/Router
 - Intel(R) Core(TM) i5-2500K CPU @ 3.30GHz (Quadcore)
 - 16GB RAM
 - 2 x RealTek RTL8111/8168 Gb Ethernet NICs
- PPP terminated at server
- LAN Connections
 - 100Mbps Ethernet
 - 802.11g Wireless connectivity
Ping tests – Gateway Router

Server ~ `# netstat -nr`

Kernel IP routing table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Genmask</th>
<th>Flags</th>
<th>MSS</th>
<th>Window</th>
<th>i rt t</th>
<th>If ace</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>150.101.212.44</td>
<td>0.0.0.0</td>
<td>UG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ppp0</td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>127.0.0.1</td>
<td>255.0.0.0</td>
<td>UG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>lo</td>
</tr>
<tr>
<td>150.101.212.44</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>UH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ppp0</td>
</tr>
<tr>
<td>192.168.101.0</td>
<td>0.0.0.0</td>
<td>255.255.255.0</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ethLAN</td>
</tr>
</tbody>
</table>

Server ~ `# ping -n -c 5 150.101.212.44`

PING 150.101.212.44 (150.101.212.44) 56(84) bytes of data.
64 bytes from 150.101.212.44: icmp_seq=1 ttl=255 time=4.47 ms
64 bytes from 150.101.212.44: icmp_seq=2 ttl=255 time=3.96 ms
64 bytes from 150.101.212.44: icmp_seq=3 ttl=255 time=3.83 ms
64 bytes from 150.101.212.44: icmp_seq=4 ttl=255 time=13.5 ms
64 bytes from 150.101.212.44: icmp_seq=5 ttl=255 time=6.76 ms

--- 150.101.212.44 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4006ms
rtt min/avg/max/mdev = 3.834/6.526/13.588/3.686 ms

Ping tests – Swinburne

Server ~ `# ping -n -c 5 www.swin.edu.au`

PING www.swin.edu.au (136.186.1.10) 56(84) bytes of data.
64 bytes from 136.186.1.10: icmp_seq=1 ttl=57 time=5.37 ms
64 bytes from 136.186.1.10: icmp_seq=2 ttl=57 time=5.47 ms
64 bytes from 136.186.1.10: icmp_seq=3 ttl=57 time=5.02 ms
64 bytes from 136.186.1.10: icmp_seq=4 ttl=57 time=4.96 ms
64 bytes from 136.186.1.10: icmp_seq=5 ttl=57 time=5.20 ms

--- www.swin.edu.au ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
rtt min/avg/max/mdev = 4.961/5.208/5.471/0.211 ms
Ping tests – UCLA (USA)

server ~ # ping -n -c 5 www.ucla.edu
PING www.ucla.edu (128.97.27.37) 56(84) bytes of data.
64 bytes from 128.97.27.37: icmp_seq=1 ttl=51 time=172 ms
64 bytes from 128.97.27.37: icmp_seq=2 ttl=51 time=185 ms
64 bytes from 128.97.27.37: icmp_seq=3 ttl=51 time=173 ms
64 bytes from 128.97.27.37: icmp_seq=4 ttl=53 time=173 ms
64 bytes from 128.97.27.37: icmp_seq=5 ttl=53 time=203 ms

--- www.ucla.edu ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4006ms
rtt min/avg/max/mdev = 172.641/181.811/203.581/11.843 ms

Ping tests – Oxford (UK)

server ~ # ping -n -c 5 www.ox.ac.uk
PING www.ox.ac.uk (163.1.60.42) 56(84) bytes of data.
64 bytes from 163.1.60.42: icmp_seq=1 ttl=49 time=310 ms
64 bytes from 163.1.60.42: icmp_seq=2 ttl=49 time=328 ms
64 bytes from 163.1.60.42: icmp_seq=3 ttl=47 time=300 ms
64 bytes from 163.1.60.42: icmp_seq=4 ttl=49 time=299 ms
64 bytes from 163.1.60.42: icmp_seq=5 ttl=49 time=304 ms

--- www.ox.ac.uk ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 299.616/308.681/328.859/10.753 ms
Speed Test – File Download

server ~ # wget http://mirror.internode.on.net/pub/test/1000meg.test
--2013-10-02 00:47:18-- http://mirror.internode.on.net/pub/test/1000meg.test
Resolving mirror.internode.on.net... 150.101.135.3
Connecting to mirror.internode.on.net|150.101.135.3|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1000000000 (954M) [application/octet-stream]
Saving to: ‘1000meg.test’

100%[================================>] 1,000,000,000 2.81MB/s in 5m 43s

2013-10-02 00:53:02 (2.78 MB/s) - ‘1000meg.test’ saved [1000000000/1000000000]

23.32 Mbps goodput (as measured by 1000*1000 = M)

Download Speed – tcpdump capture

- Midstream capture
 - Mean inter-arrival time: 0.47ms (min 0.002ms, max 1.474ms)
- Ethernet capture details
 - 1492 bytes total (20 Eth, 8 PPP, 20 IP, 32 TCP, 1408 payload)
 - Implies MTU = 1464 ???
- Measuring Ethernet data transmitted = 25.24 Mbps
- Measuring PPP data transmitted = 24.99 Mbps
Speed Test – www.speedtest.net

- Flash based app from browser
- Running on laptop connected to home LAN via wireless

![Speed Test Results](image)

Download Speed – tcpdump capture

- Speedtest uses TCP
 - (Potentially) hampered by Flash and Wireless
 - Captured packet sizes = 1474 (14 Eth, 20 IP, 32 TCP, 1408 payload)
 - Bi-directional (same)
 - Yet tracepath reports MTU = 1492, not 1460 ???
 - Something to work on…
User Experience

- Not too divorced from previous work by Chris Holman
- General web browsing
 - Simple web sites – no noticeable difference from ADSL2 (@ ~4Mbps)
 - Simple sites with lots of images – Slight improvement
 - Complex sites – no noticeable difference
- Youtube
 - No noticeable difference, slightly quicker start to play

So is it actually better?

- Large downloads (from mirrors) much quicker
- Upload speed massively better
- Multiplexing much better
 - Multiple users/apps don’t interfere with each other
 - Downloads don’t interfere with other use
- Wouldn’t expect to see much improvement from 50/20 or 100/40
Questions