Overview

- Can we build and run DIFFUSE on an embedded Linux device?
- Background: DIFFUSE and OpenWRT
- Preliminary Results
- Summary
DIFFUSE

DIFFUSE: Distributed Firewall and Flow Shaper Using Statistical Evidence
- Automated IP flow classification
- Measure flow statistics (e.g. packet length) and Machine Learning to make a classification model

DIFFUSE Architecture
DIFFUSE Architecture

DIFFUSE

- Action Node/Classifier running on CPE
 - Can we use existing hardware?
 - For home users this would be a consumer-grade router or modem/router combo
 - What Operating System?
OpenWRT

- A number of Home Routers already run embedded linux - but customisation is limited.

- OpenWRT can replace factory firmware
 - Flexibility: pre-built packages, sources, cross-compilers
 - Linux/BSD programs
 - Many routers supported: http://wiki.openwrt.org/toh/start

OpenWRT

- Image Builder/SDK available from the website:
 - www.openwrt.org

- Used trunk “Attitude Adjustment”
 - Needed SCTP support
TPLink 1043ND

- Ethernet Switch and Router
 - Atheros AR9132 400MHz (MIPS)
 - 32MB RAM
 - 8MB Flash
 - GigE (4xLAN, 1xWAN)
 - USB

- Mid-range specs
 - See OpenWRT Table of hardware: http://wiki.openwrt.org/toh/start

DIFFUSE on the TPLink

- DIFFUSE in action
 - Classify and prioritise Enemy Territory traffic

![One Way Delay: Game traffic](image)
Performance

- It works, but what are the performance penalties?
 - Is the router still usable under “realistic” conditions
 - Frames per second, throughput, CPU Utilisation
 - Measure CPU
 - Memory
 - Keeping state for concurrent flows

Testbed

- Used Ninjabox and binary search to determine throughput
 - Send UDP packets at different rates and frame size, look for packet loss
 - Not strictly designed for testing devices... requires some manual labour
Testbed

- Tcpreplay
 - Generate “other” traffic and send upstream
 - Replay game traffic across the router

Throughput

Router Throughput: Frame size Vs Frame rate

![Diagram of network testbed with traffic generator, client, and server]

![Graph showing throughput vs frame size for OpenWRT and Original Firmware]
Throughput

Router Throughput: BW Vs Frame Size

Throughput MB/s vs Frame Size

- OpenWRT Firmware
- TP-Link Firmware

CPU Utilisation

- CPU measurements were noisy - see Tech Report
- How does DIFFUSE affect the CPU Load
 - As a Classifier Node and as Action Node with IPFW
 - Used a number of methods
 - mpstat tool
 - CPU counters from /proc/stat
CPU Utilisation

CPU Load Vs Packet Rate, 512 Byte packet

AN CPU Load and Number of IPFW Rules
Memory

- Number of concurrent connections limited by RAM
 - Need to maintain an entry for each flow
 - TPLink firmware and OpenWRT defaults:
 - TPLink firmware: 5,100 flows
 - OpenWRT: 16,364 flows
 - Measuring maximum number of flow:
 - Initiating more and more new TCP connections across router
 - Approximately 32,000 connections

Summary

- Built DIFFUSE for OpenWRT on TPLink
- The router was able to act as a classifier node and as an action node
 - Firmware image, packages for TPLink 1043ND
- There is a performance hit on throughput and number of connections
 - 8000pps, ~32Mbit/s
 - There is enough RAM to handle several thousand concurrent flows
 - And routers are getting more RAM and faster CPUs...
Future Work

- Encountered a number of problems that limited testing time
 - Software bugs, BSD to Linux glue code

- More testing scenarios
 - 100’s of concurrent flows, with many ‘real-time flow’ matches
 - Native linux queuing implementation for Action Node