Micro protocols and dynamic protocol switches for network covert channels

Guest Talk at Swinburne University of Technology, Melbourne

Steffen Wendzel
University of Hagen /
Augsburg University of Applied Sciences
• Steffen Wendzel
 • Ph.D. student (University of Hagen, Germany)
 - internal protocols for network covert storage channels
 • IT4SE project (Augsburg University of Applied Sciences, Germany)
 - reducing energy consumption in smart homes
 - www.it4se.net („IT for Smart renewable Energy generation and use“)
Outline

- Single-Slide BAS Security Overview
- Covert channel overlay networks
- Micro protocols
- Dynamic protocol switches
- Optimized forwarding
BAS Security (IT4SE)

- Missing basic security features (e.g. encryption) and very old hardware
- Unpublished communication protocols (e.g. HomeMatic Home Automation System)
- Security middleware „HASI“
 - Goal: Privacy + Reducing Energy Consumption
 - Usability Aspects (e.g. energy advisor)
 - Visit www.it4se.net to find out more :-)

Advisor Rabit and „CurrentCost“
covert storage channels based on micro protocols
Scenario (pt. 1)

Auto-configuration within covert channel overlay network for mobile users:
Scenario (pt. 2)

- Multiple users/devices/access points for the covert channel overlay network
 - various covert channel software versions with
 - different supported protocols
- Step-by-step infrastructure upgrade (backward-compatibility)
- Enabling version-independent covert channel communication for peers
 - passive NEL is not sufficient
 - active NEL: Exchange covert channel protocol information using micro protocols
Related Work (hacking community)

- **LOKI2** („daemon9“, Phrack Mag. Vol. 7/51, 1997)

 "Swapping protocols is broken in everything but Linux. (...) This is why this feature is 'beta'.” → lswapt

- **Protocol Hopping Covert Channels** (2007)
 - Transparent protocol switching
 - Covert channel-internal protocols
 - ACK flags, seq. numbers, various flags, ...
 - e.g. Pingtunnel by Stodle
Related Work (scientific part)

- Ray and Mishra: A Protocol for Building Secure and Reliable Covert Channel (2008):
 - seq. number
 - data flag
 - ack flag
 - exp. seq. no.
 - start flag
 - end flag

 - Network Environment Learning Phase (NEL)
 - Communication Phase
„Initiator Protocol“

- Unified base for covert communication (support is mandatory at the beginning of each new connection between peers)
Choosing Protocols

- Using more bits of a packet's header → raise more attention
- Using LSB of the TTL or using MSB of the TTL results in different raised attention
- HTTP URL or HTTP User Agent
- We cannot define values for single protocols
 - Raised attention always depends on the network's monitoring infrastructure
 - Exotic protocols raise more attention (e.g. EGRP in a BGP network)
- Possible solution: Linking protocols to attention classes (Low, Avg, High)
Normalizer Problem

- Yarochkin et. al. as well as Wendzel/Keller: Two-army problem within NEL
- Problem: A and B cannot determine whether some cover protocols are blocked, cleared or modified by an active warden
- Two solutions: temporary participant C or TCP-like re-sending

Diagram:
- A sends P1, P2, P3
- Normalizer
- B receives P2, P3
- P1 blocked or modified by warden
Space Requirements

- Combining a header's areas:
 \[s_{pkt} := \sum_{i=1}^{n} S_i \]

- \#packets per unidirect. transaction:
 \[N := \left\lfloor \frac{S_{overall}}{s_{pkt}} \right\rfloor \]
Space Requirements (2)

• Average data per covert channel packet
 Round robin: different prob(p):
 \[s_{pkt} := \frac{1}{n} \sum_{i=1}^{n} s_i \]
 \[s_{pkt} := \sum_{i=1}^{n} p_i \cdot s_i \]

• A single protocol can result in multiple elements in P (the set of supported protocols of a peer):
 • E.g.: uncombinable elements
 \[P = \{ \text{HTTP}_{POST}, \text{HTTP}_{CONNECT} \} \]
 • But: redundant elements:
 \[P = \{ \text{ICMP}_{echo} \}, p_{ICMP_{ECHO}} = p_{ICMP_0} + p_{ICMP_8} \]
Space Requirements (3)

Combining multiple layers

\[s_{pkt}(IMAP) + s_{pkt}(TCP) + s_{pkt}(IP) + s_{pkt}(Ethernet) \]
Use-case dependent optimization

• Two use-cases:
 • Protesters: fast mobile upload of videos of harmed other protesters → high throughput, small attention.
 • Automatic password cracker (1 password/h) → small throughput, minimized attention.

\[
\begin{align*}
q_i := \frac{\text{sizeof}(P_i)}{s_{\text{pkt}}(P_i)}
\end{align*}
\]

\[
\begin{align*}
f_1 &= \sum_{i=1}^{n} p_i \cdot s_i & \text{maximize for minimal packet count} \\
\end{align*}
\]

\[
\begin{align*}
f_2 &= \sum_{i=1}^{n} p_i \cdot q_i & \text{minimize for small overhead}
\end{align*}
\]

#bits required to transfer 1 covert bit
Low-attention Forwarding using Covert Channel Proxies

- **Shared Protocols** between two proxies:
 \[SP_{i, i+1} = P_i \cap P_{i+1} \]

- **Provided Spaces** for elements in SP:
 \[S_{i, i+1} = \{ s_{pkt}(p_1), s_{pkt}(p_2), \ldots, s_{pkt}(p_n) \}, \ p_1, \ldots, p_n \in SP \]

- **Max. available space** per protocol:
 \[s_{max}(Q_i, Q_{i+1}) = \max S_{i, i+1} \]
Low-attention Forwarding using Covert Channel Proxies (2)

- **Goal:**
 - Transfer as few packets as possible to keep a low profile

- **Simple solution by using S and SP:**
 - IF \(s_{\text{max}}(Q_i, Q_{i+1}) = s_{\text{max}}(Q_{i+1}, Q_{i+2}) \)
 OR transaction complete THEN forward
 - ELSE
 - Forward as many packets of size \(s_{\text{max}}(Q_{i+1}, Q_{i+2}) \) as possible
 - cache remaining data
 - Wait time \(t \) for new data
 - IF no new data in interval \(t \) THEN forward remaining data
 - ELSE recursive call
Summary

- We propose upgradeable and mobile covert channel software for overlay networks.
- Covert channel software should be capable of using different cover protocols for robustness (blocking) and mobility.
- **Goal-dependent utilization of different protocols** (small overhead or minimized attention)
- **Optimize forwarding** for multiple protocols within the covert channel overlay network → low attention
Thank you for your attention!

Web: http://www.wendzel.de
Mail: STEFFEN @ PLOETNER-IT.DE

Are there any questions?
New Slide for the PDF Web Publication: Background Material

- Our publications serving as a base for this talk: