A Technique for Reducing BGP Update Announcements through Path Exploration Damping

Geoff Huston, Mattia Rossi, Grenville Armitage

mrossi@swin.edu.au
Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology

Terminology and BGP recap

- BGP messages between BGP speakers (peers):
 - OPEN
 - KEEP-ALIVE
 - UPDATE
 - NOTIFICATION
 - ROUTE-REFRESH

- UPDATE messages:
 - carry announcements or withdrawals or both for the same AS-path
 - announcements or withdrawals are a list of prefixes
 - “update packing”

- AS-path:
 - list of ASes to be traversed to reach the originator/owner of the prefix
 - AS-path length is the main criteria for deciding the best path
Terminology and BGP recap

- BGP speaker uses 3+1 Tables:
 - ADJ-RIB-IN (per peer)
 - RIB (routing table)
 - ADJ-RIB-OUT (per peer)
 - decision making takes place in RIB using information from ADJ-RIB-IN
 - ADJ-RIB-OUT used for UPDATEs per peer
 - FIB, forwarding table

- 2 Layers:
 - Control plane (routing plane) – exchange of routing information
 - Data plane (forwarding plane) – packet forwarding

BGP dynamics

![BGP dynamics diagram]
BGP dynamics

Path: *2,1
3,2,1

Path: 5,2,1

Path: 1

AS5

Path: 2,1
Path: 3,2,1

AS1

AS2

AS3

AS4

AS1

AS2

AS3

AS4

AS1

CAIA - Centre for Advanced Internet Architectures

http://www.caia.swin.edu.au

mrossi@swin.edu.au

16 December, 2010
What is Path Exploration?

Path: *2,1
3,2,1
4,3,2,1

Path: 5,2,1

AS5

Path: W

AS2

AS3

AS4

Path: 2,1
Path: 3,2,1

AS1

Path: W

AS3

AS4

Path: 5,2,1

Path: W

AS1
What is Path Exploration?

Path: *4,3,2,1

Path: 5,3,2,1

Path: W

CAIA - Centre for Advanced Internet Architectures
http://www.caia.swin.edu.au
mrossi@swin.edu.au
16 December, 2010
What is Path Exploration?

Path Exploration consequences

Unnecessary load!

- Every update triggers one or more decision processes ⇒ ↑CPU load
- Every peer sends updates
- ↑peers ⇒ ↑CPU load
- Path Exploration ≡ unnecessary updates ≡ unnecessary CPU load
- Unnecessary network load
Current methods to avoid unnecessary updates

- Old knowledge - countermeasures exist
- Outgoing updates depend on arrival time of incoming updates
- Three methods available in current BGP systems
- All three based on timing:
 - MRAI - Minimum Route advertisement Interval
 - Delays announcements
 - Goal: Prevention of interim announcements
 - RFD - Route Flap Damping
 - Delays withdrawals and announcements for unstable peers for 24 hrs
 - Goal: Prevention of updates caused by flapping routes
 - WRATE - Withdrawal rate limiting
 - Delays withdrawals and announcements
 - Goal: Allow peer to stabilize before sending updates

The Problem

- Current status is not ideal:
- RFD is strongly discouraged
- WRATE likely disrupts data delivery
- MRAI widely deployed with a timer of 30 seconds + random jitter for eBGP
- often not deployed on a per-prefix basis → random behavior
- We need a better solution!
Update categorization

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA+</td>
<td>Announcement of an already announced prefix with a longer AS Path (update to longer path)</td>
</tr>
<tr>
<td>AA-</td>
<td>Announcement of an announced prefix with a shorter AS Path (update to shorter path)</td>
</tr>
<tr>
<td>AA0</td>
<td>Announcement of an announced prefix with a different path of the same length (update to a different AS Path of same length)</td>
</tr>
<tr>
<td>AA*</td>
<td>Announcement of an announced prefix with the same path but different attributes (update of attributes)</td>
</tr>
<tr>
<td>AA</td>
<td>Announcement of an announced prefix with no change in path or attributes (possible BGP error or data collection error)</td>
</tr>
<tr>
<td>AW</td>
<td>Withdrawal of an announced prefix</td>
</tr>
</tbody>
</table>

Update sequences

- Path Exploration example by update sequence:
 - \{NA, AA+, AA+, AW\}
- We define Path Exploration:
 - An update sequence lengthening the AS-path gradually until stability is reached
PED – Getting rid of unnecessary updates the smart way

- Path Exploration Damping – PED Algorithm:
 - Delay updates announcing a longer (or equal-length) AS-path (AA+, AA0, AA*, AA)
 - Immediately send announcements of a shorter AS-path or withdrawals (AA-, AW)
 - Do not delay initial announcements (NA)
- Perform output queue compression
- Introduction of the Path Exploration Damping Timer – PEDI
- PED does not change the BGP protocol
- PED can be deployed incrementally

PED – Implementation

- Quagga 0.99.13
- Implemented in ADJ-RIB-OUT (does not affect decision process)
- Per-peer and per-prefix basis
- Added jitter like MRAI does
PED – Reduction in update load

- Experiments using 24 hours of real BGP updates
- Two datasets:
 1. APNIC (2 peers)
 2. Routeviews (5 peers)
- Replayed using the Quagga-Accelerator

PED – Reduction in update load

- Used a range of PEDI settings based on intervals of incoming Path Exploration sequences:
 1. APNIC: 30s – 70s, 5s steps
 2. Routeviews: 5s – 75s, 5s steps
- Compared to 0s MRAI (no delay – Juniper default) and 30s MRAI (Cisco default)
Incoming Path Exploration intervals – APNIC

CDF

log(number of Path Exploration events)

interval times in seconds

Incoming Path Exploration intervals – Routeviews

CDF

log(Number of Path Exploration events)

interval times in seconds
Results in Numbers

- Reduction of announcements compared to 30s MRAI:
 - APNIC dataset:
 - 20% for 35s PEDI
 - 29% for 65s PEDI
 - Routeviews dataset:
 - 18% for 35s PEDI
 - 32% for 65s PEDI

Good results but...

What about convergence time!?
What is convergence in BGP?

Convergence is commonly understood as:
- All ASes participating in a BGP system have received the latest, up-to-date routing information for a certain prefix
- A BGP system is stable

Approximated by: How long does it take for the upstream peer to have a stable route to a prefix?
Convergence in BGP is actually twofold:

- **Optimality:**
 - Every AS in the BGP system has the best path to the originator/owner of the prefix
 - Control plane convergence
 - The BGP system is stable

- **Reachability:**
 - Every AS in the BGP system has a path to the originator/owner of the prefix
 - Path doesn’t need to be valid, data delivery needs to be ensured
 - Data plane convergence
 - BGP system doesn’t need to be stable to achieve this state
 - Control plane convergence only needed up to an altBGP speaker

Reachability ensures data delivery, optimality the best path
Convergence refined – optimality vs. reachability

- We have 4 possible events that trigger instability:
 - \(T_{long} \) – A link failure triggers an announcement of a longer (or equal-length) AS-path
 - \(T_{short} \) – A link recovery triggers an announcement of a shorer AS-path
 - \(T_{down} \) – A link failure triggers a withdrawal
 - \(T_{up} \) – A link recovery triggers a new announcement

- Reachability and optimality are achieved at different times, depending on the event:
 - \(T_{long} \) – Reachability is achieved before optimality
 - \(T_{short} \) – Reachability is already ensured, only optimality needs to be achieved
 - \(T_{down} \) – Reachability can not be achieved, optimality is achieved when every peer has withdrawn the route
 - \(T_{up} \) – Reachability and optimality are mostly achieved at the same time, optimality can be delayed by timers though

Convergence with MRAI at 30s and PEDI at 35s

- PED: 5 seconds
- MRAI: 60-120 seconds

Stable System:
Convergence – MRAI at 30s and PEDI at 35s

T_{long} between AS_{10} and AS_{11}: Reachability achieved (AS_{11})

- PED: 0 seconds
- MRAI: 0-4 or 29-30 seconds

Convergence – MRAI at 30s and PEDI at 35s

T_{long} between AS_{10} and AS_{11}: MRAI goes further within 1-30 seconds
Convergence – MRAI at 30s and PEDI at 35s

T_{long} between AS_{10} and AS_{11}: Optimality achieved:
- PED: 66 seconds (+-jitter)
- MRAI: 2-58 seconds

T_{short} between AS_{10} and AS_{11}: Optimality achieved:
- PED: 2 seconds
- MRAI: 31-33 and 55-60 seconds
Convergence – MRAI at 30s and PEDI at 35s

Announcement of initial route at AS$_6$:
- PED: 5 seconds
- MRAI: 60-120 seconds

T_{down} at AS$_1$ Optimality achieved (all routes withdrawn):
- PED: 0 seconds
- MRAI: 0 seconds

T_{up} at AS$_1$ Optimality achieved (same as initial announcement):
- PED: 5 seconds
- MRAI: 32-34, 58-60, 76-90 seconds

Conclusions

- PED diminishes update load
- PED delays optimality in some cases
- PED is faster than MRAI for T_{up} and T_{short}, slower for T_{long} and same for T_{down}
- PED is more consistent than MRAI
- 35 second PEDI is a safe default value
- Can be deployed incrementally
- Interacts well with MRAI
Future work

- Dynamic PEDI calculation
- Improvement of heuristics / addition of new heuristics
- Improvement of implementation
- Improvement of evaluation tools

Thank you!

Questions?