

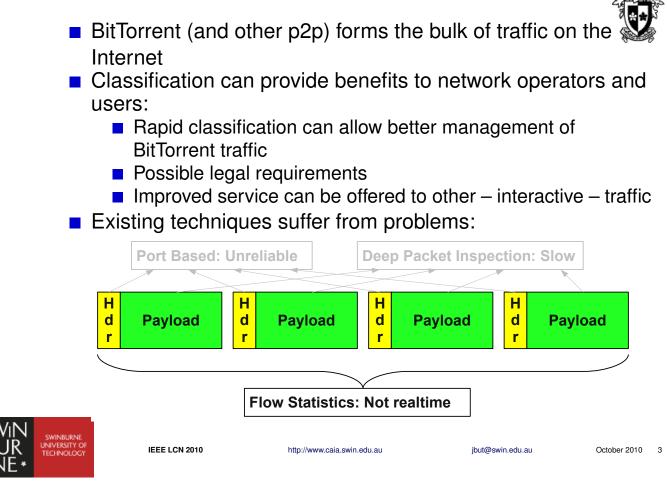
SWINBURNE UNIVERSITY OF TECHNOLOGY

Rapid Identification of BitTorrent Traffic

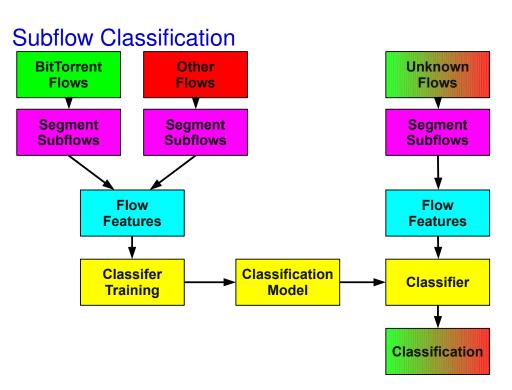
Jason But, Philip Branch and Tung Le

jbut@swin.edu.au

Centre for Advanced Internet Architectures (CAIA) Swinburne University of Technology


Outline

- BitTorrent and Traffic Classification
- Traffic Observations
 - Statistical feature sets
- Classification
- Performance and classification timeliness



BitTorrent – Classification

Rapid Flow Classification

We train the classifier to detect sub-flows

Common Packets

Generic Packet Sizes

- The BitTorrent protocol performs two functions
 - 1. Transfer data large packets
 - 2. Update status small packets
- BitTorrent exhibits packets of both types

Data Flow

- Centralised transfer applications are typically uni-directional
- For a p2p protocol, we expect traffic flow to be bi-directional

http://www.caia.swin.edu.au

IEEE LCN 2010

Classification Features

- A Characteristic BitTorrent Packet is one with a payload of 5 or 17 bytes
- *r*_{cbt} = Ratio of Characteristic BitTorrent Packets to total packets within a (sub)flow

r_{small} – Small Packet Ratio

- A Small Packet is one with a payload of less than 40 bytes
- *r_{small}* = Ratio of Small Packets to total packets within a (sub)flow

ibut@swin.edu.au

October 2010 5

rlarge – Large Packet Ratio

- A Large Packet is one with a payload greater than 1350 bytes
- Based on Ethernet maximum segment size
- *r*_{large} = Ratio of Large Packets to total packets within a (sub)flow

σ_{small} – Smaller Payload Standard Deviation

- Calculate the standard deviation of the TCP payload size for packets flowing in each direction
- If traffic flow is uni-directional, one of these values will be very small

http://www.caia.swin.edu.au

 $\sigma_{small} =$ Smaller of the two calculated standard deviations

IEEE LCN 2010

Traffic Features

Traffic Traces

- BitTorrent Captured from 4 swarms of up to 40 peers connected at ADSL1-like line rates, over 38,000,000 packets
 - Other University of Twente Public Traffic Trace¹
 - FTP Captured distraction traffic nearly 1,000,000 packets from about 1,000 flows
- Our analysis indicates that these features differ
 Some features differentiate only two traffic types
- Features appear to differentiate BitTorrent (p2p) from other bulk transfer protocols (FTP)
- Features hold validity over sub-flows

¹Available at: http://traces/simpleweb.org

ibut@swin.edu.au

October 2010 7

Traffic Classification

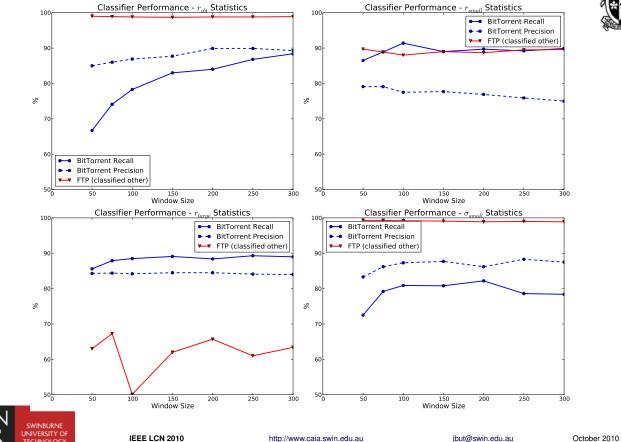
- We calculated these four features over our data set for a www number of sub-flow sizes
- We used the WEKA implementation of C4.5² to train and test the classifier
 - Decision Tree based classification
 - Standard 10-fold Cross-Validation test
- Used captured FTP traffic as distractor traffic
- Results for whole-of-flow classification very good see paper for details
- Tested for all sub-flow sizes and each combination of features

²N. Williams, S. Zander and G. Armitage, "A Preliminary Performance Comparison of Five Machine Learning Algorithms for Practical IP Traffic Flow Classification", ACM SIGCOMM Computer Communication Review, vol. 36 no. 5 pp. 7–15, October 2006


```
IEEE LCN 2010
```

Classifier Performance – individual features

http://www.caia.swin.edu.au

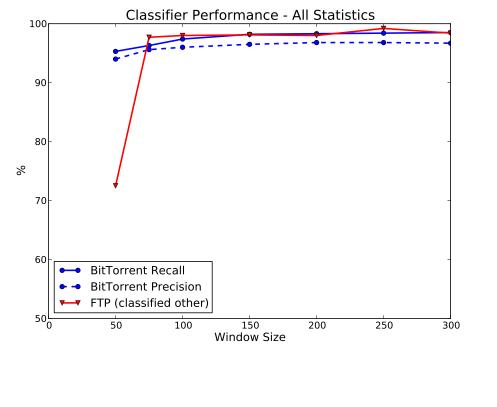


10

October 2010

9

ibut@swin.edu.au



Classifier Performance – all features

October 2010

11

Classifier Performance – 150 packet subflows

http://www.caia.swin.edu.au

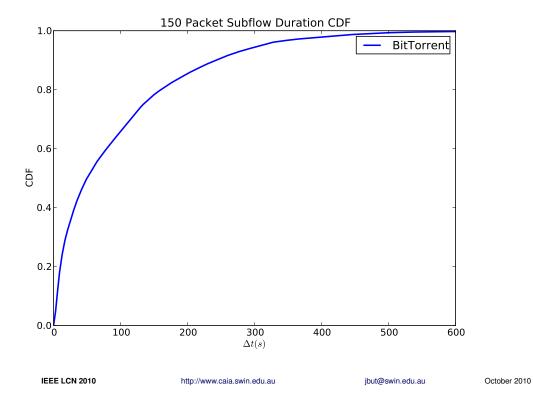
IEEE LCN 2010

Classification Recall		
BitTorrent Recall	BitTorrent Precision	FTP (Recall as other)
98.2%	96.5%	98.1%

Excluding *r*_{cbt} feature

Classification Recall		
BitTorrent Recall	BitTorrent Precision	FTP (Recall as other)
97.5%	93.7%	97.6%

Minor drop in performance


 Expected to be more robust for protocol changes or deliberate attempts to circumvent detection

jbut@swin.edu.au

Classification Timeliness

How long does it take to capture 150 packets for classification?

Conclusions

13

- Existing BitTorrent classification schemes are either non-scalable or use properties that preclude real-time classification
- We present four features r_{cbt} , r_{small} , r_{large} and σ_{small}
- Suitable sub-flow features to allow for rapid classification
- Using an ML-based C4.5 classifier and these features:
 - Can classify entire BitTorrent flows with 98.9% Recall and 97.9% Precision
 - 150 packet sub-flows 98.2% Recall and 96.5% Precision
 - Ignoring r_{cbt} 97.5% Recall and 93.7% Precision
- Analysis indicates that 150 packets subflows would typically be captured in under 3 minutes at ADSL like line rates
- Since these features are based on packet sizes, we expect this classifier to be robust for:
 - Encrypted BitTorrent
 - BitTorrent over UDP

